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ABSTRACT

Lattice-Gas Dynamics

Volume I

Viscous Fluids

The theory and computation of lattice gas dynamics for viscous fluid hydro-

dynamics is presented. Theoretical analysis of these exactly conserved, discrete

models is done using the Boltzmann approximation, a mean-field theoretical

treatment. Theoretical results are then compared to numerical data arrived at

by exactly computed simulations of simple lattice-gas systems. The numerical

simulations presented were carried out on a prototype lattice-gas machine, the

CAM-8, which is a virtual fine-grained parallel mesh architecture suitable for

discrete modeling in arbitrary dimensions. Single speed and multispeed lattice

gases are treated. The new contribution is an integer lattice gas with many

particles per momentum state. Comparisons are made between the mean-field

theory and numerical experiments for shear viscosity transport coefficient.
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Chapter 1

Introduction

1.1 Overview of the Lattice Gas Scheme

To simplify a molecular dynamics program, one might consider a completely

discrete version of things.1 In this simplest case, one would still like to correctly

simulate the many-body system of N particles—that is, to capture all the rel-

evant physical kinetics, at least at a course-grained “hydrodynamic” scale—yet

one would also like the most severely restricted microscopic behavior. This is

a minimalist’s delight. Each particle has a definite position within a crystal-

lographic lattice and time advances in discrete units. Consequently, a particle

can have only a certain value for its momentum; that is, it can only move along

the lattice directions going from one site to the next, and so its velocity is quan-

tized, v=nc, where n is a positive integer and c = `/τ is the ratio of the lattice

cell size to smallest unit of time. A particle occupies a point on the lattice; it

resides at a single site at a time. Given that a particle is a point, the extent of

information needed to encode its existence is a single classical bit. If the bit is
1Received for publication, 9 November 1996.
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on, the particle is there. If the bit is off, the particle it not there.

But how many particles can reside at one site of the lattice at any particular

time? A minimalist, in deference to Fermi-Dirac statistics, would immediately

suggest an answer: the maximum number of particles that can simultaneously

reside at a single lattice site must equal the maximum number of distinct mo-

menta one is willing to keep track of. To use “quantum mechanical” terms, each

particle occupies its own distinct local state.

In this way, the Pauli exclusion principle is enforced as there can be no more

than a single particle per momentum state. As a particle in state α at some lat-

tice site of the crystallographic space “hops” into state β, say at a neighboring

site, a digital bit is moved from α and into β. So in lattice gas dynamics one

simulates a system of Boolean particles. Global data permutations correspond

to spatial translation and endow the bits with “kinetic energy”. Local and con-

ditional data permutations correspond to collisional interactions between bits.

Effectively, all the “computational work” is placed in the collisional interactions,

since it is there that the decisions are made as to whether or not a set of Boolean

particles should collide and if so how. This computational picture of particle

dynamics is related to finite difference methods for solving partial differential

equations [89, 22]. But the lattice gas methodology has an intrinsic value be-

yond finite difference schemes in that there is no internal source of error in the

numerical treatment, it is therefore referred to as exactly computable.

To complete the introduction to lattice gases, some historical notes about

the subject are presented and some computational attributes unique to lattice
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gases are discussed (this is provided as motivation to show why one might want

to study lattice gases). The introduction concludes with a section outlining the

organization of this volume on lattice gas dynamics for viscous fluid simulation.

1.2 Background

Let me briefly review some of the historical developments in the lattice gas field.

An overview of the lattice gas subject has been given by Boghosian [14]. Lattice

gases are a special case of cellular automata, popularized in the 1980’s by Ed

Fredkin [39] and by Stephen Wolfram [94, 95]. An early treatment of the cellular

automata subject is presented by Tommaso Toffoli and Norman Margolus in

their book on cellular automata machines [91]. Following the cellular automata

paradigm, lattice gases are ideally suited for fine-grained parallel processing.

Simple implementations of a discrete molecular dynamics on a square lattice

were investigated in the early 1970’s by the French, in particular Yves Pomeau

and coworkers [47]. By the late 1970’s, cellular automata research was under-

way at the Information Mechanics Group at MIT on reversible computation

by Edward Fredkin, Tommaso Toffoli, and Norman Margolus[87, 39, 61]. The

idea of building special-purpose machines to simulate these physics-like models

on a fine-grained space [88, 61] originated there. A good review of the kind of

cellular automata modeling done in the early 1980’s is given by Gérard Vich-

niac [93]. During this time, Stephen Wolfram visited the Information Mechanics

Group and was stimulated by their work. In 1983 Wolfram popularized cellular

automata as a simple mathematical model to investigate self-organization in

3



statistical mechanics [94, 71]. Beyond this, no useful insights towards under-

standing or modelling real physical systems arose.

After visiting the MIT Information Mechanics Group in 1983 and seeing a

simple discrete gas on a square lattice running on the cellular automata ma-

chine CAM-5 of Toffoli and Margolus [89, 88], Pomeau realized the potential

for simulating large fluid systems and much new interest and activity in the

field emerged. A race began to theoretically prove that a hydrodynamic limit

emerges from simple lattice gas rules. The intense interest was not stirred as

much by the subject of hydrodynamics itself, but instead by the possibility of

a simple cellular space-time model capturing such complex natural behavior

in an exact way. In 1985 Wolfram completed the first hydrodynamics simula-

tions on a triangular lattice [97] on the first Connection Machine—at that time,

lattice gases were a very appropriate application for the bit oriented single in-

struction, multiple data Connection Machine. By 1986 Frisch, Hasslacher, and

Pomeau had reported the existence of an isotropic two-dimensional lattice gas

on the triangular lattice [41]. In the same year Wolfram completed the most

detailed treatment of the basic theory of discrete fluids including novel sym-

metry considerations and introduced the Boltzmann approximation. Frisch et

al. found the minimal lattice symmetry needed to recover isotropic flow in the

continuum limit is a triangular lattice with a particle possessing six momentum

states. Their model is now referred to as the FHP-model or hexagonal lattice gas

model. Accompanying the seminal 1986 FHP paper was a paper by Margolus,

Toffoli, and Vichniac on cellular-automata supercomputers for fluid-dynamics

4



modeling [65]. The contribution of Margolus et al. was meant to complement

the theoretical work of Frisch et al., pointing out that with dedicated computa-

tional hardware the lattice gas models may gain an advantage over traditional

methods of physical modeling.

By 1987 the lattice gas methodology was extended to model three-dimensional

flows. The minimal lattice found by Frisch et al. [40] was the face centered hy-

percubic (fchc) lattice. The fchc lattice with 24-nearest neighbors is projected

onto three dimensions in a simple fashion by limiting the depth of the fourth

dimension of the simulation volume to one lattice link. Much effort was spent

on finding optimal collisions to minimize the viscosity of the fluid [49], however

this task has proven very difficult. The reason for this difficulty is that the fchc

lattice gas has 224 or 16.7 million input configurations. In practice, all possi-

ble collisions are not included in a simulation because of the large demand for

local memory needed to pre-store all the necessary collisional events in table

look-up format—an efficient scheme for implementing complex interactions. To

ease memory loads, lattice isometries are exploited to reduce the size of look-up

tables [82].

The lattice gas approach has been extended to the direct simulation of the

Boltzmann equation [59, 73, 68, 26], since space and time are discrete it is

termed the lattice-Boltzmann equation [22]. Since the Boltzmann equation is

an integrodifferential equation, usually a cutoff to the collision integral is made

to treat the Boltzmann equation as an approximate differential equation. In

the lattice gas community, typically the collision integral is reduced to a sim-
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ple form introduced in 1954 by D. Bhatnager, E. Gross, and M. Krook [10].

A more descriptive title for the mesoscopic transport equation would be the

lattice-Boltzmann equation in the BGK approximation. In place of the exactly

computable microscopic dynamics of Boolean particles, one begins at the meso-

scopic regime which deals with the probability of a particle occupying a given

momentum state. This probability is set by a certain statistical distribution

function of choice. So, the lattice Boltzmann equation is the transport equation

for the single particle distribution function. The approach offers both theoret-

ical and computational advantages. For modelling, one specifies a priori the

single particle equilibrium distribution. Computationally it has the advantage

of eliminating inherent noisy fluctuations in the simulation, but at the expense

of discarding semi-detailed balance and information concerning particle-particle

correlations.

The lattice Boltzmann equation in the BGK approximation is a unique

contributions of the lattice gas community to high-performance computational

physics [54]. The lattice Boltzmann equation, usually implemented within one

hundred lines of code on a massively parallel processor2, allows one to efficiently

model complex fluids and provides a straightforward particle-based metaphor to

computation. It relies on floating point calculations and therefore is suited for

massively parallel machines such as Thinking Machine’s Connection Machine-5

(CM-5), International Business Machines’s SP-2, or Cray T3E. Essential con-

nections between physics and computing are lost in this method. It is a finite
2See Appendix C for example of lattice-Boltzmann code written in the parallel C-Star

language for the Connection Machine-5.
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difference method useful for the simulation of viscous fluids [67] and multiphase

fluids [77]. It offers no intrinsic promise to explore essential connections be-

tween physics and computing. Therefore, lattice Boltzmann simulations are not

treated in this volume.

The hope of modeling very high Reynolds number flows by lattice gas meth-

ods has not been realized, even with models that violate semi-detailed balance—

lattice gas models in the Boltzmann approximation have shown considerably

more success in achieving high Reynolds number flows3. The simulation of high

Reynolds flow by a quantum lattice gas is investigated in volume III [102].

Areas of lattice gas research include: hydrodynamics and thermohydrody-

namics [26, 34, 43, 2, 67], immiscible fluids [75, 25, 46, 45], multiphase systems

[21, 4, 3, 5, 103, 44, 77, 99, 98, 78], reaction-diffusion systems [31, 57, 53],

magnetohydrodynamics [23, 24, 27, 66], flow through porous media [74, 28],

renormalized kinetic theory [55, 17, 50, 18, 92, 70, 12], and quantum dynamics

[83, 84, ?, 104]. A good review of the lattice gas subject, with particular em-

phasis on interfaces, phase transitions, and multiphase flow, has recently been

presented by Rothman and Zaleski [76]. Additionally, a fairly comprehensive

bibliography of the subject has been compiled [52].

Recently the first prototype of the next generation cellular automata ma-

chine, CAM-8, has been constructed [64]. The current 8-module CAM-8 proto-

type, with a site density of 224 16-bit sites per module, has a total of 128 million

sites. A machine with one billion sites whose total space can be updated in less
3Lattice Boltzmann simulations for three dimensional flows with Reynolds numbers of

about 50,000 were presented in June 1993 at the International Conference on Pattern Forma-
tion and Lattice-Gas Automata sponsored by the Fields Institute, Waterloo, Canada.
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than a second has been designed [90].

1.3 Lattice Gas Attributes

There are several motives for studying lattice gases, some practical and some

theoretical. Commonly cited motives are oriented towards computer science and

issues related to massively parallel processing or reasons related to modeling

physical systems with complex boundary conditions. The lattice gas’ attributes

usually mentioned in the literature include: 1) bit “democracy”; 2) simplicity

and universality; 3) exact computability; 4) locality; and 5) unitarity.

Firstly, to quote Frisch, a lattice gas possesses “bit democracy.” It was be-

lieved a decade ago that lattice gases would be efficient for physical modelling.

However, it is now quite clear that lattice gases are generally very inefficient at

this. In floating point calculations there exist uncontrolled round-off errors in

the least significant bits. The most significant bits are weighted exponentially

more than the least significant bits (because of the exponential encoding used

in floating-point numbers). Consequently the value of the most significant bits

determines the computational outcome, at least under numerically stable con-

ditions. In contrast, in lattice gases all bits have equal weight (an exception to

this is the integer lattice gas that is discussed in detail in the last chapters 5

and 6 of this volume). Bit democracy usually is not as efficient vis a vis bit

weighting found in standard numerical methods. In a simple lattice gas, only a

single bit is used to represent a particle, whereas in molecular dynamics a few

hundred bits are used (six floating-point numbers for position and momentum).
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Nevertheless, molecular dynamics is in most cases a much better modelling tool.

The only exception to this general rule occurs at large hydrodynamic scales and

for quite complex fluids. Under these circumstances, lattice gases can outstrip

molecular dynamics, and lattice gases are the best modelling tool (in this area

of computational physics usually no competing high level scheme exists) [15].

These issues are explored in detail in Volume II on long-range lattice gases for

multiphase fluid dynamics [101].

Secondly, lattice gases possess an inherent simplicity and universality. Just

as simple models in statistical mechanics, such as the Ising model, shed light

on equilibrium thermodynamics and equilibrium critical phenomena, so too do

lattice gas models shed light on kinetics and dynamical phenomena [103]. More-

over, its inherent simplicity gives the lattice gas pedagogical value since many

properties of macroscopic systems can be predicted through analysis of simple

local microscopic properties. For example, lattice gases are a simple way to un-

derstand details of fluid system properties such as the dependence of the shear

viscosity on particle collision rates. Most computational fluid dynamics codes

are complicated and intricate in their approximations. In contrast, lattice gases

are the simplest conceptual expression of Navier-Stokes flow.

Thirdly, lattice gases are exactly computable. Lattice gases can model clas-

sical systems while keeping mass, momentum, and energy exactly conserved.

Exact modeling is valuable, for example, in cases where multiparticle correla-

tions are essential to the system’s behavior. Lattice gas simulations can ver-

ify theoretical predictions beyond the Boltzmann mean-field approximation of
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uncorrelated collisions: the phenomenon of long-time tails in the velocity au-

tocorrelation function [1, 72, 36] has recently been observed in lattice gases

[55, 17, 18].

Fourthly, like their cellular automata cousins, lattice gases are local. The

combination of simplicity and locality of lattice gas rules allows—in principle—

nearly ideal logic density. The highest logic density that one could physically

imagine would be the atomic density of solids. There is the interesting prospect

of lattice gas architectures built at such a high informational density, termed

nanoscale computing. There is hope that in the future computation will be

achieved with “quantum gates” [62, 60, 11, 48, 7]. In fact the first quantum

gate has recently been implemented using nuclear magnetic resonance spec-

troscopy where a few nuclear spins in each molecule of a liquid sample embody

quantum bits [30]. As the fundamental computational element’s size reduces to

nanoscale ranges its behavior is governed by quantum mechanics. This leads to

the following discussion of a quantum version of a lattice gas.

Fifthly, the evolution operator for quantum lattice gases is unitary—a quan-

tum lattice gas is a generalization of a classical lattice gas where quantum bits

replace classical bits, see Volume III [102]. Quantum mechanics requires unitary,

and hence invertible, time evolution—the microscopic reversibility of the lattice

gas dynamics is important here.4 The ultimate type of computation would allow

one to exactly represent a quantum system. In the context of computation on a
4Even before quantum mechanics becomes a constraint, the reversibility of lattice gas

dynamics may become a significant benefit, since at very high logic densities the dissipation
of heat caused by irreversible computations has already become an important engineering
issue [8, 9].
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discrete spacetime lattice, Feynman noticed “the possibility that there is to be

an exact simulation, that the computer will do exactly the same as nature” [37].

He hoped that using computers in an exactly computable way might lead to

new possibilities in our understanding of physics. Feynman introduced a brand

new notion: there may exist the possibility of a quantum computer [38]. Quan-

tum lattice gases are a realization of this.5 It is believed that quantum lattice

gases can exhibit emergent behavior quite similar to the many-body behavior

described by the Schrödinger equation of nonrelativistic quantum mechanics

[83, 84, ?]. Volume III on lattice gas dynamics for quantum fluids explores

some lattice based models for quantum computation. For example, it is shown

that an array of quantum bits evolving by a particular local unitary evolution

operator can Bose condense in close analogy with the Helium II phase of the

He4 isotope below the λ-point [104].

1.4 Organization

This volume is the first of three volumes that treat the subject of lattice gas dy-

namics. This volume focuses on viscous fluid dynamics and sets a foundation for

the next two volumes which deal with generalizations of the method presented

here. Volume II deals with nonlocal lattice gases. Here the generalization comes

about by including two-point interparticle interactions. This is an appealing al-

ternative to molecular dynamics in that multiphase fluid behavior is simulated
5It has been shown by Shor [80] that quantum computers, good at finding the period of

periodic functions, can be used to factor large numbers, a computational task whose complex-
ity falls into the nonpolynomial-complete algorithmic class. That is, no classical computer
can effectively factor a number of arbitrarily large size, and this fact is the cornerstone upon
which cryptographic algorithms are based. The prospects for building a quantum computer
are just beginning to be explored [81, 33].
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at hydrodynamic scales not achievable by molecular dynamics. Volume III deals

with quantum lattice gases. This new type of lattice gas is also quite appealing

since it addresses the feasibility of performing quantum computation on a large

collection of spin- 1
2 quantum objects.

Lattice-based particle models implemented on spatially fine-grained parallel

computers can represent, in a coarse-limit, interesting physical dynamics in a

way that offers the computational physicist exactly computed results not easily

obtained with conventional techniques implemented on conventional computers.

A self-contained review of the lattice gas subject sufficient for one to un-

derstand how to model viscous hydrodynamics is provided here. The mathe-

matical treatment presented is carried out in a arbitrary number of dimensions.

For simplicity when doing numerical verification, two-dimensional lattice gas

simulations have often been implemented and tested.

The analysis of the lattice gas system is applied at three separate limits or

physical regimes. The microscopic limit deals with the individual motions of the

particles in the system. At this level a particle is nothing more than a single bit

of information and everything is discrete. Next, the mesoscopic limit deals with

the expectation value of microscopic quantities obtained by ensemble averaging

in the grand canonical ensemble. The statistical mechanics treatment applies

at the mesoscopic limit. Finally, the macroscopic limit (also referred to as the

scaling limit) deals with emergent hydrodynamic behavior of the system. In

this limit, one characterizes the dynamical behavior of the system by emergent

partial differential equations of motion, one for each additive conserved quantity
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of the system (viz. mass, momentum, and energy). In the macroscopic limit

everything is continuous and the system behaves like a fluid.

I address neutral, incompressible, viscous hydrodynamics and thermohydro-

dynamics. Some of the material here is well known by the lattice gas community

and is given as review material of the subject of lattice gases with purely local

collisions. Presented is the concept of collisions and streaming and the lattice

gas microdynamical transport equation. One goes from a microscopic descrip-

tion to a mesoscopic one by ensemble averaging. The mesoscopic equation is the

lattice Boltzmann equation. The macroscopic limit is reached by performing a

Chapman-Enskog expansion of the mesoscopic particle distribution function in

terms of the macroscopic density and velocity variables. Although the micro-

scopics is severely discretized, the resulting form of the macroscopic equation

is a well defined partial differential equation, the Navier-Stokes equation for

incompressible viscous fluids.

The theoretical description presented for a discrete lattice gas system is new.

I begin by recovering the lattice gas microdynamical transport equation from

Hamilton’s equations. The idea of particle kinetics on a lattice embedded in

continuous space is presented and some useful mathematical tools are introduced

for the purpose of doing discrete calculus on the lattice. A discrete Green’s

function is used to formulate the interacting part of the Hamiltonian. The

equations of motion for a single lattice gas particle are then cast in Hamiltonian

format. The Hamiltonian for a many-body system is then obtained by summing

the single particle Hamiltonian over all sites of the lattice and over all lattice
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directions.

All the exact numerical simulations of some new lattice gases6 have been

carried out on the cellular automata machine (CAM-8), and in fact are the first

lattice gas experiments conducted on this prototype machine.7 The lattice gas

experiments presented here are the first of their kind carried out on the new

prototype machine beginning in 1992, the cellular automata machine CAM-8,

the architecture built by Margolus and Toffoli [63]. Results of the simulation

range from viscous hydrodynamics to multiphase systems to solid-state sys-

tems to quantum systems: (Volume I) Rayleigh-Bénard convection instability,

Kelvin-Helmholtz shear instability, and Von-Karman vortex shedding instabil-

ity; (Volume II) liquid-gases, spinoidal decomposition, and liquid-solid melts;

and (Volume III) superfluidity and second sound.

Also presented in this volume is a treatment of a multispeed lattice gas.

Sound speed versus temperature measurements for a simple hydrothermal lattice

gas are given to illustrate the behavior of this lattice gas.

A novel integer lattice gas is presented [16] and a mean-field prediction for

the shear viscosity is shown to agree with numerical experiment. The integer

lattice gas is shown to obey fractional statistics, which is a simple closed form

analytical function. The form of this fractional distribution function reduces to

identically the Fermi-Dirac form in its one-particle-per-momentum-state limit

and furthermore reduces to identically the Bose-Einstein form in its infinite-
6In Volume II, focus is on novel classical lattice gases with long-range interactions as a

way to model finite-temperature multiphase dynamics and molecular dynamics for solid-state
modeling.

7A brief description of the CAM-8 architecture is given in Appendix A.
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number-of-particles-per-momentum-state limit. A statistical mechanics treat-

ment of the subject which has not been previously worked out for any lattice

gas system is presented here.
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Chapter 2

Single-Speed Lattice Gas
Theory

A Boolean formulation of an exactly computable dynamical system, known as a

lattice gas, is given as a discretization of classical kinetic transport of a system

of identical particles. The discretization disconnects collisional scattering from

kinetic transport, or streaming. The disjoint events are both fixed within a

cellular phase space.

The lattice gas dynamics is stated in a way that is consistent with the Boltz-

mann equation for kinetic transport. In essence the lattice gas dynamics are a

simplified form of molecular transport restricted to a cellular phase space.

In this chapter, the dynamics is described at the microscopic, mesoscopic,

and then macroscopic scale. Starting with a discrete microdynamical transport

equation for number variables (the particle occupations), mesoscopic equations

are obtained by averaging over an ensemble of states. In this way a Boltz-

mann equation is obtained for the particle distributions. Next, the macroscopic

equations, in particular mass continuity and the Navier-Stokes equation for vis-

16



Table 2.1: Glossary of Model Constants

Constants Names
` length unit
τ time unit
m mass unit
c velocity unit ( l

τ )
D spatial dimension
B lattice coordination number
êa unit lattice vectors
L number of bits per channel
a directional index (1,2,. . . , B)

i, j, k, l spatial indices

Table 2.2: Glossary of Single-Speed lattice gas Variables (L=1)

Variables Names
p number of particles per collision
na Boolean particle number variable
fa particle distribution function
Ωa collision operator
Jab Jacobian matrix
| α〉 eigenkets of J
κα eigenvalues of J
cs sound speed
p pressure
ρ density
vi velocity
Πij momentum flux density tensor
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Table 2.3: Statistical Mechanics Glossary of Variables
Variables Names

Grand Canonical Ensemble
Ξ grand partition function
Ω grand potential
Um connected correlation functions
F distribution function
f reduced distribution function
z fugacity
β inverse temperature
µ chemical potential
P pressure
T temperature
S entropy
V volume
N number of particles

cous incompressible flow, are obtained by a Chapman-Enskog expansion. The

scheme exploits the isometries of the finite-point group of a crystallographic

spatial lattice to recover isotropic fluid dynamics in the macroscopic limit.

In this chapter on single-speed lattice gases, since I am concerned only with

recovering viscous incompressible fluid dynamics, it is important at the outset

to explain the characteristics of this flow regime. In the incompressible limit

the fluid density is constant and mass continuity is equivalent to the fluid being

divergenceless

∂ivi = 0. (2.1)

In an ideal fluid, with a nonthermal equation of state, the pressure is directly

proportional to the density with the square of the sound speed the constant of

proportionality

p = ρc2s. (2.2)

This is a viscous fluid. In the incompressible limit, a fluid can also be charac-
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terized by one transport coefficient, the shear viscosity, denoted η(ρ) and for

incompressible lattice gas fluids has been extensively studied [40, 82, 49, 100].

It is a density dependent coefficient that determines the rate of momentum

diffusion within the fluid. I do not concern myself with the other transport

coefficients: there is no bulk viscosity coefficient since the flow is divergence-

free, and there is no thermal conductivity, since there is not a separate energy

equation. Therefore, in the continuum limit of this flow regime, momentum

conservation implies the simplest form of the nonlinear Navier-Stokes equation

ρ∂tvi + gρ∂j(vivj) = −∂ip+ η∂2vi, (2.3)

where the factor, g, is unity for real fluids but usually not unity in lattice gas

models—g is referred to as the Galilean prefactor. The nonlinearity of the

dynamics comes about because of the vivj term, the so called convective term,

that gives rise to interesting flow instabilities (in Chapter 3, see for example the

well known Kelvin-Helmholtz instability depicted in Figure 3.10 and the Von

Karman instability depicted in Figure 3.11).

So the agenda is to introduce an artificially discrete microscopic dynamical

system whose evolution in the continuum limit is described by a simple but

nonlinear fluid equation. In this Chapter I deal only with the simplest discrete

microdynamics that involves only local collisions.

The discrete nature of the lattice gas microscopic dynamics implemented

on present day computers has low spacetime resolution. To state this another

way, as a general rule, the characteristic length and time scales of a lattice gas

simulation are relatively small. The exception to this rule occurs for lattice
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gases that model a complex fluid. The term complex fluid refers to any fluid

where the form of its continuum dynamical equations is either uncertain or

altogether unknown. Examples of complex fluids are a multiphase fluid such as

a liquid-gas system, and a multispecies fluid such as a microemulsion with two

immicisible species and a dipolar surfactant. In this first part of the dissertation

where I consider only viscous fluids, a gain in resolution is not obvious (later in

the second part where I treat multiphase fluids, the gain in resolution will be

apparent). To clarify issues, let us try to see why this is so.

There are two ways one could attempt to do hydrodynamics on a computer.

The first way is to do a complete molecular dynamics treatment of a many-

body system, a very low-level approach. With the largest available computers

today capable of simulating the complete molecular dynamics of hundreds of

millions of particles, emergent hydrodynamic behavior of the system of parti-

cles is observed. Yet the characteristic scale of the hydrodynamic flow remains

extremely small, on the order of a single micron. This is far too small for most

hydrodynamic problems of interest and consequently molecular dynamics is not

used as a tool for hydrodynamic modeling of ideal fluids. The second way to

do hydrodynamics on a computer is to directly implement the Navier-Stokes

equation using either a finite-differencing scheme, a finite-element scheme, or a

spectral scheme for example. With this kind of high-level approach, the char-

acteristic hydrodynamic scale modeled can be increased to any arbitrary size so

long as the Reynolds number of the simulation matches that of the fluid system

of interest (and Re < 10, 000 in 3D).
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The lattice gas approach is a non-traditional way to do hydrodynamics on a

computer. Here the characteristic scales achievable for ideal fluids is on the order

of a single meter, a million times greater than that achievable using traditional

molecular dynamics. The point is that although the resolution attainable by a

lattice gas method is far smaller than that of a high level scheme, a spectral

or finite element scheme for example, it is nevertheless far greater than the

resolution offered by molecular dynamics. Since for complex fluids one often

does not even know the continuum dynamical equations, high level schemes

are not even an option for modeling the system. So one would traditionally

have to resort to a low-level molecular dynamics treatment and suffer a lack of

system resolution. The lattice gas approach offers a way to model the continuum

behavior of the system with a significant boost in resolution over that offered

by molecular dynamics for systems that cannot be modeled by some high-level

scheme.

The primary reason for this boost in resolution over molecular dynamics is

that in the artificial microworld of the lattice gas, much microscopic detail is left

out by the severe discreteness in the numerical treatment. Consequently, in a

lattice gas the typical distance between particle collisions, the mean-free path, is

only a single lattice spacing. And the typical time between particle collisions, the

mean-free time, is only a single time step iteration. So in every computational

step of the lattice gas model, every particle undergoes a collisional scattering

event. In molecular dynamics this is not at all the case. For a particle to

traverse the distance of a mean-free path and for the elapsed time to span the
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period of a mean-free time, hundreds or thousands of computational iterations

are expended.

The discreteness of the artificial microscopic world also provides several men-

acing handicaps. Specifically, there is a lack of Galilean invariance, substantial

noisy fluctuations, and a limitation to subsonic flow regimes. Over the past

several years, the lattice gas community has strived to overcome these handi-

caps. For example, the lattice Boltzmann method recovers Galilean invariance

and is essentially a noiseless method, yet it sacrifices exact computability and

is plagued with numerical instabilities. I have found a new and interesting way

to overcome these handicaps without sacrificing exact computability, using an

integer lattice gas [16]. This generalization of a Boolean lattice gas is discussed

in Chapter 5 later in this report.

Remark:

It is an interesting fact, and perhaps inevitable, that to obtain an exactly com-

putable representation of fluid dynamics one must resort to performing a statis-

tical treatment over discrete number variables that locally interact according to

some simple fixed sets of rules.

2.1 Microdynamics: An Exactly Computable Dy-
namical System

2.1.1 Preliminaries

Before introducing the basic lattice gas microdynamical transport equation, let

us give some notational conventions. Consider a spatial lattice with N total

sites. Particles have a unit of mass m and propagate on the lattice. The unit
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of length is the size of a lattice cell, `, and the unit of time, τ , is the time it

takes for a particle to go from one lattice site to a nearest neighboring site, so

the unit propagation speed is defined by c = `
τ .

The lattice vectors denoted by eai where a = 1, 2, . . . , B define a Bravais

lattice, where B is the lattice coordination number. I will be quite selective

when choosing a vector set {eai}. The set will be a valid set only if all n-th rank

tensors composed of a product of these lattice vectors are isotropic and fully

symmetric under interchange of indices, see §2.1.2 below.

A particle’s momentum state is completely specified at some time, t, by spec-

ifying its location on the lattice, xi, and its direction, mceai, at that location.

The particles locally obey Pauli exclusion since only one particle can occupy a

single momentum state at a time and are consequently Fermi-Dirac distributed.

The number of configurations of momenta states per site is 2B . The number of

possible single particle momentum states available in the system is Ntotal = BN ,

so the number of system configurations1, or phasespace points, is 2BN . With

P particles in the system, denote the background filling fraction, or the reduced

density, by d = P
BNtotal

. Note that 0 ≤ d ≤ 1 and for a large system d is

considered a continuous variable.

The number variable, denoted by na(~x, t), takes the value of one if a particle

exists at site ~x at time t in momentum state mcêa, and takes the value of zero

if a particle is not present at ~x at time t with momentum mcêa. As a matter

of notation it should be understood that whenever a directionally dependent
1For a typical lattice gas in two dimensions B = 6 and N = 1, 000, 000, so the number of

phasespace points 26,000,000 is quite large.
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quantity is written, its subscripted index is taken modulo B. For example, it is

understood that na+b = n mod B(a+b). In terms of these quantities, the particle’s

momentum may be expressed as

pai(~x, t) ≡ mceaina(~x, t). (2.4)

2.1.2 Isotropic Lattice Tensors

Construct an n-th rank tensor composed of a product of lattice vectors [96]

E(n) = Ei1...in
=
∑

a

(ea)i1 · · · (ea)in
. (2.5)

It is implied that sums over a directional index range from 1 to B,
∑

a ≡∑B
a=1.

All odd rank E vanish. Express E(2n) in terms of Kronecker deltas, δij = 1 for

i = j and zero otherwise. This problem of expressing the E-tensors in terms

of products of Kronecker deltas can be turned into a problem of combinatoric

counting.

It is possible to enumerate all the possible symmetric tensors with even rank,

denoted ∆(2n). For n = 1 the second symmetric rank tensor is

∆(2)
ij = δij . (2.6)

Next, consider the n = 2 case, the fourth rank tensor ∆(4n)
ijkl . Since the Kno-

necker delta is symmetric in its indices, the following four products are identical:

δijδkl = δijδlk = δjiδkl = δjiδlk. The degeneracy is 22. Furthermore, the or-

der of the Kronecker deltas also doesn’t matter since they commute; that is,

δijδkl = δklδij . This degeneracy is 2!. So for n = 2, the total number of ways

to write a fourth-rank tensor as a product of two Kronecker deltas is 222! = 8.
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The total number of permutations for 4 indices is 4! = 24. So from this counting

procedure, it is follows that ∆(4) consists of 24
8 = 3 terms. Therefore, for n = 2

the fourth rank symmetric tensor is

∆(4)
ijkl = δijδkl + δikδjl + δilδkj . (2.7)

For the case where n is arbitrary, there are 2n identical ways of writing the

product of n Kronecker deltas. For each choice of indices, there are an additional

n! number of ways of ordering the products. Therefore, the total number of ways

to write an 2nth-rank tensor as a product of n Kronecker deltas is 2nn! = (2n)!!.

The total number of permutations for 2n indices equals (2n)!. So from this

counting procedure it follows that ∆(2n) consists of a sum of (2n!)
(2n)!! = (2n− 1)!!

terms. That is, for n = 3, ∆(6) will have fifteen terms, for n = 4, ∆(8) will have

35 terms, and so forth.

Using cartesian unit vectors, in two-dimensions for example, write

∆(2) = x̂x̂+ ŷŷ. (2.8)

It follows that

δijδkl = (x̂x̂+ ŷŷ)ij(x̂x̂+ ŷŷ)kl (2.9)

= (x̂x̂x̂x̂+ x̂x̂ŷŷ + ŷŷx̂x̂+ ŷŷŷŷ)ijkl (2.10)

and similarly

δikδjl = (x̂x̂x̂x̂+ x̂ŷx̂ŷ + ŷx̂ŷx̂+ ŷŷŷŷ)ikjl (2.11)

δilδkj = (x̂x̂x̂x̂+ x̂ŷŷx̂+ ŷx̂x̂ŷ + ŷŷŷŷ)ilkj . (2.12)
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Therefore, ∆(4)
ijkl must be of the following form

∆(4) = 3x̂x̂x̂x̂+ 3ŷŷŷŷ + x̂ŷŷx̂+ ŷx̂x̂ŷ + x̂ŷx̂ŷ + ŷx̂ŷx̂+ x̂ŷŷx̂+ ŷx̂x̂ŷ. (2.13)

Knowing that for E to be isotropic and symmetric, it must be proportional to

∆

E(2n) = α(2n)∆(2n). (2.14)

The constant of proportionality, α(2n), may be obtained by taking the trace

successively as follows. Since eaieai = 1 and δii = D, for n = 1 it follows that

∑
a

eaieai = α(2)δii −→ α(2) =
B

D
, (2.15)

giving the result for the second rank tensor

E(2) =
B

D
δij . (2.16)

Since δijkk = (D+ 2)δij and consequently δiijj = D(D+ 2), for n = 2 it follows

that ∑
a

eaieaieajeaj = α(4)δiijj −→ α(4) =
B

D(D + 2)
, (2.17)

giving the result for the fourth rank tensor

E(4) =
B

D(D + 2)
(δijδkl + δikδjl + δilδkj) . (2.18)

Continuing this procedure, in general, the lattice tensors are

E(2n+1) = 0 (2.19)

E(2n) =
B

D(D + 2) · · · (D + 2n− 2)
∆2n. (2.20)

In this chapter product tensors up to E(4) will be needed, but not beyond.

Appropriate choices for the lattice vector sets are: D = 2, the triangular lattice
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with B = 6; D = 3, the icosahedral lattice with B = 12; and D = 4, the

face-centered hypercubic lattice with B = 24 [96].

2.1.3 Dynamical Transport Equation

The evolution of the lattice gas is written in terms of na as a two-part process:

a collision part and a streaming part. One therefore expresses the microscopic

dynamics by writing down a collision equation and a streaming equation for the

occupation variable na(~x, t). Both of these equations are quite simple. Com-

bining them gives the lattice gas microscopic transport equation.

If a single bit is used to encode a particle’s position and momentum state

(referred to as the L = 1 case where L is a model parameter for the number

of bits per local momentum state), at every site in the lattice there are B bits

and consequently 2B possible local configurations. All these local configurations

could be partitioned into mutually exclusive sets. A set of local configurations

where every element of the set is a local configuration with the same value for

the invariant quantities for the particular system (i.e. mass and momentum

for a single speed lattice gas) is termed an equivalence class and is denoted EC.

A lattice gas collision operator has the property that it will cause transitions

from one local configuration to another, where the “incoming” and “outgoing”

configurations are elements of the same equivalence class.

Denote a particular incoming configuration at some spacetime point (~x, t)

by the set ~n(~x, t) = {n1(~x, t), n2(~x, t), . . . , nB(~x, t)}. After the collision step,

the particles would be in a new outgoing configuration, denoted ~n′(~x, t) =

{n′
1(~x, t), n

′
2(~x, t), . . . , n

′
B(~x, t)}. The collision part of the dynamics permutes
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the particles locally at each site and this is written as follows

n′
a(~x, t) = na(x, t) + Ωa(~n(~x, t)), (2.21)

where Ωa represents the collision operator and in general depends on all the

particles, ~n, at the site. In the streaming part of the dynamics a particle at

position ~x with momentum mcêa “hops” to its neighboring site at ~x+ `êa and

then time is incremented by τ

na(~x+ `êa, t+ τ) = n′
a(~x, t). (2.22)

Combining the collision equation (2.21) and the streaming equation (2.22) gives

the lattice gas microdynamical transport equation of motion

na(~x+ `êa, t+ τ) = na(~x, t) + Ωa[~n(~x, t)]. (2.23)

In a classical lattice gas, the collision operator can only permute the particles

locally on the site and so the local particle number is conserved before and

after the collision. The outgoing configuration, ~n′, can be chosen determinis-

tically or probabilistically. But regardless of the collision mechanism, the set

of outgoing bits {n′
1, n

′
2, . . . , n

′
B} must be a permutation of the incoming bits

{n1, n2, . . . , nB}.2

n(~x, t) =
∑

a

n′
a(~x, t) =

∑
a

na(~x, t). (2.24)

Equation (2.24) defines the local number of particles. Summing (2.23) over
2For a quantum lattice gas, this restriction is lifted. The outgoing configuration is not

a permutation of the incoming configuration. Instead, the outgoing configuration can be a
superposition of any configurations within the respective equivalence class. This quantum
generalization of a classical lattice gas is treated in Volume III [102].
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lattice directions then implies the following constraint on the collision operator

∑
a

Ωa = 0. (2.25)

We may define the local momentum as

pi(~x, t) = mc
∑

a

eain
′
a(~x, t) = mc

∑
a

eaina(~x, t), (2.26)

which of course must also be conserved before and after a collision. Again, this

imposes a constraint on the collision operator that for all i the following sum

must vanish ∑
a

eaiΩa = 0. (2.27)

These constraints (2.25) and (2.27) on the collision operator will allow us to

obtain the proper form of the macroscopic equations of motion, in particular

the mass continuity equation and the Navier-Stokes equation.3

There are several ways to allow for collisional transitions between elements

of an equivalence class. It is important to catagorize the possibilities because

they determine the underlying nature of our artificial microworld: whether it is

deterministic or statistical, whether it satisfies detailed balance or semi-detailed

balance (defined below), and whether there exists a time-reversal invariance.

Consider a simple equivalence class with four members: {A,B,C,D}. The

likelihood of all collisions can be expressed in a 4×4 matrix, called the transition

matrix, whose element Tn,n′ gives the probability of transition for state n to state
3This is so only if detailed balance or semi-detailed balance is obeyed—these are defined

below.
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n′. In this simple example, the transition matrix is

T =



TAA TAB TAC TAD

TBA TBB TBC TBD

TCA TCB TCC TCD

TDA TDB TDC TDD


 . (2.28)

An energy-sector is the set of all states with the same total energy. The statis-

tical mechanics of a lattice gas system is worked out below, but for now it is

assumed that the probability for being in a state depends on the total energy

of the state. In a particular energy sector, the transition matrix must satisfy

the property that the marginal probabilities all sum to unity, along both the

columns and rows of the matrix. The sum along columns is the semi-detailed

balance condition ∑
n

Tn,n′ = 1, (2.29)

and the sum along rows is the conservation of probability condition

∑
n′
Tn,n′ = 1. (2.30)

Note that summing over all collisions gives back the size of the equivalence class,

denoted by ‖ T ‖. That is,

∑
n,n′∈EC

Tn,n′ =‖ T ‖ . (2.31)

A deterministic dynamical system is one whose transition matrix components

are either zero or one. The trivial deterministic transition matrix is just the

identity matrix that maps all states onto themselves. There are two types of

deterministic transition matices, symmetric and non-symmetric. An example of
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a symmetric transition matrix is the following

T =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 (2.32)

where configuration A ↔ B and configuration C ↔ D, and a non-symmetric

one is

T =




0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1


 (2.33)

where configuration A → B → C → A and configuration D does not make a

transition. Traditionally, these two types of transition matrices are said to de-

scribe systems that obey deterministic detailed balance and deterministic semi-

detailed balance, respectively.

The deterministic transition matrices are permutation matrices. One way

to express a deterministic transition matrix is to specify the collision operator,

Ωa, as a polynomial in the number variables as follows

Ωa =
∑

{i1,...,ik}∈EC
αQa(i1, . . . , ik), (2.34)

where {i1, . . . , ik} is a set of occupied particle states, α ∈ {−1, 0,+1} is a scalar

coefficient, and where each term in the sum is written in factorized form as

Qa(i1, . . . , ik) =
na+i1

1 − na+i1

· · · na+ik

1 − na+ik

B∏
j=1

(1 − na+j). (2.35)

Ωa in (2.34) is deterministic and the associated transition matrix is a permuta-

tion matrix.4

4For example, on a square lattice with B = 4 lattice vectors, ê0 = x̂, ê1 = ŷ, ê2 = −x̂,
and ê3 = −ŷ, consider the collision operator in the mass two and momentum zero equivalence
class. There are two elements of this equivalence class, A ≡ {1, 0, 1, 0} and B ≡ {0, 1, 0, 1}
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A statistical dynamical system is one whose transition matrix components

are fractional numbers. Again, there are two types of statistical transition mat-

ices, those obeying statistical detailed balance and those obeying statistical semi-

detailed balance depending on whether they are symmetric or non-symmetric.

An example of a transition matrix obeying statistical detailed balance is the

following

T =




0 1
2

1
2 0

1
2 0 0 1

2
1
2 0 0 1

2
0 1

2
1
2 0


 (2.36)

and a statistical semi-detailed balance one is

T =




0 1
2 0 1

2
0 0 1

2
1
2

1
2

1
2 0 0

1
2 0 1

2 0


 . (2.37)

A uniform statistical transition matrix obeys detailed balance and has all com-

ponents equal to the inverse of the size of the equivalence class: Tn,n′ = 1
‖T‖ .

For example

T =




1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4


 . (2.38)

and the collision operator is

Ωsquare
a = Qa(1, 3) − Qa(0, 2) = na+1na+3(1 − na)(1 − na+2) − nana+2(1 − na+1)(1 − na+3).

The associated transition matrix is

T = TAA TAB

TBA TBB
= 0 1

1 0 .

To see this explicitly write out the collision equation (2.21)

n′
a = na + na+1na+3(1 − na)(1 − na+2) − nana+2(1 − na+1)(1 − na+3),

and supposing ~n = {1, 0, 1, 0}, then the above equation generates the following outgoing
configuration, ~n′ = {0, 1, 0, 1}, and vice versa. For a = 0, we have

n′
0 = n0 + n1n3(1 − n0)(1 − n2) − n0n2(1 − n1)(1 − n3) = 0,

since n0 = 1, n1 = 0, n2 = 1, and n3 = 0. So Ω0 causes n0 = 1 to flip to value 0. Similarly,
for a = 1, 2, 3 all the bits are flipped and the outgoing configuration is n′

0 = 0, n′
1 = 1, n′

2 = 0,
and n′

3 = 1.
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When implementing a statistical lattice gas on a computer it is often simplest

to just take the transition matrix to be uniform. Even if the equivalence class

is particularly large, a uniform sampling algorithm is all that is required. On

the CAM-8, a table lookup method is used to implement the uniform sampling

within an equilvalence class(i.e. a random offset is added to a pointer to the

base address of a block of memory that holds all the elements of a particular

equivalence class, see (E.4) in Appendix E for more details).5

Remark:

In the exactly computed lattice gas systems, information is preserved and the

physical kinetics is strictly microscopically reversible. Nevertheless in the con-

tinuum limit there emerges dissipative behavior, that is, viscous damping. That

there can be viscous damping at the macroscopic scale and also time-reversal

invariance at the microscopic scale is a manifestation of a well-known aspect of

classical statistical mechanics. There exist determinism and reversibility in the

microscopic physics while simultaneously there exist dissipation and increasing

entropy (viz. second law of thermodynamics) in the macroscopics physics.
5If one chooses all the components equaling the inverse of the size of the equivalence class

minus one: Tn,n′ = 1
‖T‖−1 , then all the diagonal components are zero. For example,

T =

0

B
B
@

0 1
3

1
3

1
3

1
3 0 1

3
1
3

1
3

1
3 0 1

3
1
3

1
3

1
3 0

1

C
C
A . (2.39)

This simple transition matrix still statisfies detailed balance and allows for a slight reduction
in viscosity. Yet it is more difficult to implement than a uniform statistical transition matrix.
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2.1.4 Embedding in a Continuum

It is necessary to define a calculus of functional quantities that have definite

values on the lattice sites xi. Toward this end, consider the lattice described

earlier in §2.1.2 embedded in a continuous space. It is possible to do this by

interpreting xi as a position coordinate in the continuum.

Let A~x denote a lattice-based quantity; that is, it is an array of values. It is

possible to construct a continuous field A(xi, t) defined over all spacetime such

that A(~x, t)|~x on lattice = A~x,t. For example, A(~x, t) may be envisioned as an

interpolated spline function of the discrete set A~x,t. The concept of the change

in the quantity δA~x,t = A~x+`ê,t − A~x,t with respect to a change in the vector

δxai = `eai is related to a spatial derivative of A(~x, t) as follows

δA~x,t

δxai
↔ ∂A(~x, t)

∂xi

∣∣∣∣
on lattice

, (2.40)

and the concept of the change in the quantity δA~x,t = A~x,t+τ −A~x,t with respect

to a change in one time step δt = τ is related to a temporal derivative of A(~x, t)

as follows

δA~x,t

δt
↔ ∂A(~x, t)

∂t

∣∣∣∣
on lattice

. (2.41)

Throughout the rest of this dissertation, Leibniz differential notation is used on

lattice-based quantities with this understanding. The scaling limit is defined as

that limit where the correspondence relations (2.40) and (2.41) become physi-

cally realizable. In the scaling limit, a series expansions in powers of the small-

ness ε (viz. Knudsen number or Mach number) is taken in a fashion whereby

diffusive ordering holds for the differentials δt ∼ ε2 and δx ∼ ε.
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The smallest unit of phase space volume (the single particle phase space

volume) is denoted by hD ∼ δpDδxD. Note that in terms of the fundamental

units (δp = mc and δx = `), the “Planck constant” for the lattice gas is

h ∼ m
`2

τ
. (2.42)

Then in analogy to the connection between the counting of states in classical

statistical mechanics and quantum statistical mechanics (see Appendix F), the

following identity holds in the scaling limit where the total phase space volume

of the system is much larger than the unit phase space volume hD

∑
x

∑
a

↔ 1
hD

∫
dDx

∫
dDp. (2.43)

This can by partitioned into the sum over spatial sites and the sum over mo-

mentum directions, given by the following integrals

∑
x

↔ 1
`D

∫
dDx (2.44)

∑
a

↔ 1
(mc)D

∫
dDp, (2.45)

respectively. Note that the sum over all sites (2.44) is in fact the volume of the

lattice, denoted as V .

2.1.5 Hamiltonian

The Hamiltonian is the sum of the kinetic energy and the potential energy of

interaction

H(~x, ~p) = T (~p) + U(~x), (2.46)
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where ~x and ~p are the position and momentum respectively, in the generalized

coordinates. The particle’s kinetic energy is

T (~p) ≡ cipi, (2.47)

Where ci is the fundamental propagation speed for the system and pi is the

particle’s momentum vector. To be explicit, since the particle is on the lattice,

in channel a say, its kinetic energy can be written as

Ta ≡ ceaipai = mc2eaieaina(~x), (2.48)

where (2.4) has been inserted in the R.H.S. of the above expression. In (2.48)

there is an implied sum over the spatial index i but there is no implied sum-

mation over the directional index a. This convention is used throughout this

dissertation. We will see a posteriori that (2.48) leads to the correct lattice gas

transport equation.6 Note that in (2.48), unimodularity of the occupation vari-

able (n2
a = na) is not required. Therefore, (2.48) is a suitable definition of the

kinetic energy for the case where the maximum number of particles occupying

a particular momentum state may exceed one (L > 1). This is the situation

treated in Chapter 5 on integer lattice gases. But for now, we focus on the

Boolean case (L = 1).

The potential energy at xi due to all other particles in the system can be

straightforwardly expressed in terms of the discrete Green’s function of Poisson’s
6Note that if the kinetic energy had the alternate form

T =
p2

2m
,

then (2.56) would be off by a factor of na since in this case the result would be

ẋi = caina(~x).

This would led to an incorrect nonlinear form for the lattice gas transport equation.

36



equation g(~x, ~x′) (see §B.3 in Appendix B)

Ua(~x) ≡ −mc

τ

∑
x′
g(~x, ~x′)eai

∂Ωa(~x′)
∂x′

i

, (2.49)

where there is an implied summation over the spatial index i and no summation

over the directional index a. The validity of the form of (2.49) will be determined

a posteriori in that the correct microscopic lattice gas transport equation is

obtained thereby. Therefore the single particle lattice gas Hamiltonian,

Ha = Eana(~x) − mc

τ

∑
x′
g(~x, ~x′)eai

∂Ωa(~x′)
∂x′

i

, (2.50)

where Ea ≡ mc2ê2a, is taken here as an ansatz.

The Jacobian of the collision operator is defined as

Jab ≡ ∂Ωa

∂nb
. (2.51)

The collisional part of the Hamiltonian (2.50) can be written in terms of J after

using the chain rule ∂Ω/∂x′ = (∂Ω/∂n)(∂n/∂x′) to give

Ha = Eana(~x) − mc

τ

∑
x′

∑
b

g(~x, ~x′)eaiJab
∂nb

∂x′
i

(2.52)

In this form, the Hamiltonian is written as an explicit function of the occupation

variable and its gradient, H = H(n,∇n).

2.1.6 Hamilton’s Equations

Hamilton’s first equation in continuum form is

∂H

∂pi
= ẋi. (2.53)
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A dot above a quantity indicates the total time derivative of that quantity. The

lattice-based form of Hamilton’s first equation may be written

∂H

∂pi

∣∣∣∣
on lattice

= ẋi|on lattice .

It will be a matter of convention to write this more simply as

ẋi =
∂Ha

∂pai
, (2.54)

where the R.H.S. is assumed to be a Kaehler derivative.7 Note the R.H.S. of

(2.54) explicitly depends on the directional index a whereas the L.H.S. does not.

At first glance this may seem confusing. Yet there is actually no inconsistency

in the indices with the understanding that an on lattice derivative (i.e. d~x
dt )

generates a change along one of the lattice directions. Kaehler differentiating

(2.48) with respect to the momentum (2.4) gives

∂Ta

∂pai
= ceai. (2.55)

Equating (2.54) and (2.55), Hamilton’s first equation reduces to

ẋi = ceai. (2.56)

This is consistent with particle kinetics on a lattice since δxi = `eai and δt = τ .

Hamilton’s second equation in continuum form is

−∂H

∂xi
= ṗi. (2.57)

7Consider some polynomial function in the discrete number variable. A Kaehler derivative
of this function with respect to the number variable is the polynomial function that would
be obtained if the number variable were continuous. As an example where n ∈ {0, 1}, the
Kaehler dervative of the polynomial function f(n) = nk is defined as follows ∂f(n)

∂n
≡ knk−1,

where k is some integer.
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The lattice-based form of Hamilton’s second equation may be written

−∂Ua

∂xi
= ṗai, (2.58)

since the spatial gradient of the kinetic energy vanishes because Ta depends

only on pi. The scaling limit derivative of (2.49) with respect to the position

coordinate is

∂Ua

∂xi
= −mc

τ

∑
x′

∂g(~x, ~x′)
∂xi

eai
∂Ωa(~x′)
∂x′

i

. (2.59)

Using the reflection symmetry identity (B.15), it is possible to do a discrete

version of integration by parts according to (B.9), see §B.2 in Appendix B.

Then we have

∂Ua

∂xi
=

mc

τ

∑
x′

∂g(~x, ~x′)
∂x′

i

eai
∂Ωa(~x′)
∂x′

i

(2.60)

= −mc

τ

∑
x′

∂2g(~x, ~x′)
∂x′2

i

eaiΩa(~x′) (2.61)

= −mc

τ

∑
x′
δxx′eaiΩa(~x′) (2.62)

→ ∂Ua

∂xi
= −mc

τ
eaiΩa(~x). (2.63)

This result for the gradient of the potential energy can be obtained from

(2.59) in another way. Differentiate (2.59) with respect to the position vector

again

∂2Ua

∂x2
i

= −mc

τ

∑
x′

∂2g(~x, ~x′)
∂x2

i

eai
∂Ωa(~x′)
∂x′

i

(2.64)

= −mc

τ

∑
x′
δxx′eai

∂Ωa(~x′)
∂x′

i

(2.65)

→ ∂2Ua

∂x2
i

= −mc

τ
eai

∂Ωa(~x)
∂xi

(2.66)
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Integrating this last result over all space and taking the constant of integration

to be zero gives identically (2.63).

Equating (2.58) and (2.63), Hamilton’s second equation reduces to

ṗai =
mc

τ
eaiΩa(~x) (2.67)

The second Hamilton equation (2.67) is also consistent with particle kinetics on

a lattice, where the discrete moment change is δpi = mceaiΩa(~x) in the time

interval δt = τ . In fact, (2.67) is just the usual lattice gas transport equation

in disguise. Let’s see why this is so.

Using (2.4), write (2.67) as follows

d

dt
[mceaina(~x)] =

mc

τ
eaiΩa(~x). (2.68)

Since the lattice vectors are constants, this reduces to the simpler expression

d

dt
[na(~x)] =

1
τ

Ωa(~x). (2.69)

Using Hamilton’s first equation, (2.56), the total time derivative can be written

as

d

dt
=

∂

∂t
+ ẋi

∂

∂xi

=
∂

∂t
+ ceai

∂

∂xi
.

Inserting this into (2.69) to replace the total time derivative gives(
τ
∂

∂t
+ `eai

∂

∂xi

)
na(~x) = Ωa(~x). (2.70)

This is just a Taylor expansion (to the first order in the smallness) of the lattice

gas microdynamical transport equation (2.23)

na(~x+ `êa, t+ τ) = na(~x, t) + Ωa(~x).
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Table 2.4: Statistical Ensembles Obtained by Successive Legendre Transformations. The
grand canonical ensemble is used here for lattice gas calculations.

Energy Set Thermodynamics Ensemble
Internal Energy (S, V,N) dU = TdS − pdV + µdN
Enthalpy (S, P,N) dH = TdS + V dP + µdN
Gibbs Free Energy (T, P,N) dG = −SdT + V dP + µdN
Helmholtz Free Energy (T, V,N) dA = −SdT − PdV + µdN Canonical
Grand Potential (T, V, µ) dΩ = −SdT − PdV −Ndµ Grand Canonical

This proves that Hamilton’s second equation is the well known lattice gas trans-

port equation. Therefore, the ansatz for the lattice Hamilton (2.50) is appro-

priate for particle kinetics on a lattice.

Because the lattice gas dynamics is partitioned into distinct streaming (2.22)

and colliding events (2.21) that occur in sequence, there is an instantaneous

switch between kinetic energy and potential energy. That is, the particles do

not move and collide simultaneously. This has an important consequence when

analyzing the behavior of the lattice gas system from a statistical mechanical

point of view.

2.2 Mesoscopic Equilibrium: A Statistical Me-
chanics Treatment

Let {n} represent the set of all accessible states in the grand canonical ensemble

for the lattice gas system. Let En and mn denote the total energy (kinetic plus

potential) and the total mass, respectively, of the system. Then in the grand

canonical ensemble, the grand partition function is defined as the the Boltzmann
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weights summed over all accessible states

Ξ ≡
∑
{n}

e−β(En−µmn). (2.71)

In (2.71), β is the inverse of the thermal energy, which is Boltzmann’s constant

times the system temperature (β ≡ 1
kBT ). Also, µ is the chemical potential. The

mesoscopic expectation value of a quantity O is obtained in the grand canonical

ensemble by the following recipe

〈O〉 ≡ 1
Ξ

∑
{n}

e−β(En−µmn)O(n). (2.72)

The grand potential, which has units of energy, is defined as

Ω ≡ − 1
β

log Ξ. (2.73)

If Ω can be calculated, all thermodynamic properties of the lattice gas system

can be calculated in turn. In particular, I am interested in calculating the

equilibrium particle distribution function and eventually the pressure, P , of the

lattice gas system using (2.73).

Let N denote the expected number of particles in a system with volume V

when the system is at fixed temperature and chemical potential

N ≡ 1
Ξ

∑
{n}

mne
−β(En−µmn). (2.74)

Since, the pressure is a function of the system temperature, T , and density,

ρ ≡ N
V , it will be necessary to calculate N also using (2.73). By inspection of

(2.71), an expression for N can be immediately written in terms of the grand

potential

N = −
(
∂Ω
∂µ

)
β,V

. (2.75)
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To obtain a similar expression for the pressure as a derivative of the grand

potential, it is necessary to first obtain the thermodynamics relation for the

grand potential in the grand canonical ensemble. In this ensemble, the expected

energy is the product of the pressure times the volume

E ≡ 1
Ξ

∑
{n}

Ene
−β(En−µmn). (2.76)

Again by inspection of (2.71), it follows that

E − µN = −
(
β
∂Ω
∂µ

)
µ

(2.77)

= Ω + β

(
∂Ω
∂β

)
µ

(2.78)

= Ω − T

(
∂Ω
∂T

)
µ

. (2.79)

Therefore, solving for the grand potential gives the following thermodynamic

relation

Ω = E − TS − µN, (2.80)

where the equilibrium entropy denoted by S is defined as

S ≡ −
(
∂Ω
∂T

)
µ,V

. (2.81)

From (2.80), the equilibrium pressure is

P = −
(
∂Ω
∂V

)
β,µ

, (2.82)

where dE = −PdV and

dΩ = −PdV − SdT −Ndµ. (2.83)

In this section I will derive the grand partition function in the grand canon-

ical ensemble. There are three constraints one must consider to do the counting
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of states correctly. These constraints are energy conservation, mass conserva-

tion, and momentum conservation. Because of the partitioning of the particle

dynamics into disjoint streaming and colliding events, the interacting part of

the Hamiltonian is not needed to compute the total energy of the system and

may be dropped altogether. Consequently, the grand partition function of the

locally interacting lattice gas can be written in closed analytical form [16].

The total energy of a lattice gas system is obtained by counting all the

occupations and only the free part of the Hamiltonian is needed

H◦ ≡
∑
xa

Eana(~x), (2.84)

where Ea is the energy of the ath momentum state. This intuitively follows from

the partitioning of the microscopic transport equation into two distinct phases:

streaming and collision. If the total energy is counted in the streaming phase,

(2.84) is appropriate as there is no long-range interaction manifesting potential

energy. In §?? on long-range lattice gases where the system does possess poten-

tial energy, it is rigorously shown that as the interaction range approaches zero

the potential energy contribution to the total energy vanishes for small Knudsen

numbers. Note that the double sum appearing in shorthand in (2.84) simply

means
∑

xa =
∑V

x=1
∑B

a=1. The total mass density and momentum density for

the integer lattice gas system are respectively

ρtot ≡
∑
xa

mna(~x), (2.85)

and

ρtotVi ≡
∑
xa

mceaina(~x). (2.86)
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These serve as constraints on the system as it equilibrates towards high entropy

states. Following (2.71), the grand partition function is

Ξ ≡
∑
{n}

e−β(H◦−µρtot)+ρtotViαi , (2.87)

where
∑

{n} represents a sum over all possible configurations of the occupation

variables.

Inserting (2.84), (2.85), and (2.86) into (2.87), the grand partition function

becomes

Ξ =
∑
{n}

∏
xa

e−β(Eana−µmna)+αimceaina . (2.88)

Notice that all the exponents in (2.88) are first-order linear in na. So it is

convenient to define the fugacity as

za ≡ z◦ae
αimceai , (2.89)

where

z◦a ≡ e−β(Ea−µm). (2.90)

Then the grand partition function is compactly written as

Ξ =
∑
{n}

∏
xa

zna
a . (2.91)

In this case the grand partition function can be straightforwardly calculated.

To begin with, one may derive, in the usual fashion of the statistical mechanics

for system of fermionic particles, the grand partition function as follows

Ξ =
∏
xa

1∑
n=0

zn
a (2.92)

=
∏
xa

(1 + za) (2.93)
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−→ log Ξ =
∑
xa

log (1 + za) (2.94)

Since ∂za/∂β = −Eaza, then

−∂ log Ξ
∂β

=
∑
xa

za

1 + za
Ea. (2.95)

The expected energy is then

〈E〉 ≡ −∂ log Ξ
∂β

=
∑
xa

F1(z)Ea, (2.96)

where the Fermi-Dirac distribution is immediately identified

F1(za) =
1

z−1
a + 1

. (2.97)

2.3 Mesodynamics: A Mean-Field Treatment

To theoretically analyze the lattice gas dynamics, it is convenient to work in the

Boltzmann limit where a field point is obtained by an ensemble average over the

number variables. Define the particle distribution function, fa ≡ 〈na〉, resulting

from an ensemble of initial conditions and the neglect of correlations, with the

average taken over the ensemble.

If all the particles entering a site in the lattice are uncorrelated at all times,

then the particle occupancies are considered randomized by Boltzmann molecu-

lar chaos (this is called the Stosszahlansatz). Define the mean-field collision op-

erator as the ensemble average of the microscopic collision operator, Ωmf
a ≡ 〈Ωa〉.

Using the Boltzmann molecular chaos assumption, the mesoscopic collision op-

erator is considerably simplified. So neglecting all two-point and higher order

correlations between particle occupancies, the mean-field collision operator is
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constructed in a fashion identical to its counterpart (2.34) in the microscopic

limit. Ωmf
a , as a polynomial in the particle distribution variables as follows

Ωmf
a =

∑
{i1,...,ik}∈EC

α〈Qa(i1, . . . , ik)〉, (2.98)

where {i1, . . . , ik} is a set of occupied particle states and α ∈ {−1, 0,+1} is a

scalar coefficient and where each term in the sum is written in the mean-field

limit in factorized form as

〈Qa(i1, . . . , ik)〉 =
fa+i1

1 − fa+i1

· · · fa+ik

1 − fa+ik

B∏
j=1

(1 − fa+j). (2.99)

Ωmf
a in (2.98) is probablistic. Further discussion about the mesoscopic collision

operation, in particular its dependence on the transition matrix, is given below

in §2.3.2.

In the mean-field limit, fa still satisfies a collision and streaming equation

corresponding to (2.21) and (2.22)

f ′
a(~x, t) = fa(~x, t) + Ωmf

a (~f(~x, t)), (2.100)

and

fa(~x+ `êa, t+ τ) = f ′
a(~x, t). (2.101)

By ensemble-averaging all terms in the microscopic transport equation (2.23),

then obtain the mesoscopic transport equation

fa(~x+ `êa, t+ τ) = fa(~x, t) + Ωmf
a [~f(~x, t)], (2.102)

that appears identical in form to (2.23).
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The actual particle distribution is composed as a series expansion in powers

of ε ∼ δx ∼ √
δt

fa = f (0)
a + εf (1)

a + O(ε2). (2.103)

This is termed diffusive ordering when δt ∝ (δx)2, well known for random walk

processes. Taylor expanding the L.H.S. of (2.102) to only first order in time but

to second order in space, one obtains the lattice Boltzmann equation

∂tfa(~x, t) + ceai∂ifa(~x, t) +
`2

2τ
eaieaj∂i∂jfa(~x, t) + O(ε3) =

1
τ

Ωmf
a [~f(~x, t)].

(2.104)

where (2.104) has been expanded to second order in ε.

Write the particle number density, momentum density, and momentum flux

density in terms of the single-particle distribution function as follows

m
∑

a

fa(~x, t) = ρ(~x, t) (2.105)

mc
∑

a

eaifa(~x, t) = ρ(~x, t)vi(~x, t) (2.106)

mc2
∑

a

eaieajfa(~x, t) = Πij(~x, t). (2.107)

Note that for a uniform filling of states, fa = d for all directions, then

ρ(~x, t) = mBd (2.108)

vi(~x, t) = 0 (2.109)

Πij(~x, t) = ρc2sδij , (2.110)

where cs ≡ c√
D

. This is expected since when vi = 0, the momentum flux density

tensor is diagonal and scales with the pressure (Πij = pδij) and for an ideal gas

p = ρc2s and cs is the sound speed in the fluid.
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The general form of the single particle distribution function, appropriate for

single speed lattice gases, is a Fermi-Dirac distribution (2.97) and is a function

of the sum of scalar collision invariants, α+ βeaivi, having the following form

fa =
1

1 + eα+βeaivi
. (2.111)

Fundamentally, this arises because the individual digital bits used to represent

particles satisfy the Pauli exclusion principle. By Taylor expanding (2.111)

about ~v = 0 to fourth order in the velocity and equating the zeroth, first,

and second moments of fa to (2.105), (2.106), and (2.107) respectively, the

parameters α and β are determined.

To provide a kind of roadmap for the remainder of this chapter, I now give

the Mach number expansion of the inviscid part of the lattice gas distribution

function

(fa
eq)ideal

LGA =
n

B
+
nD

cB
eaivi + g

nD(D + 2)
2c2B

eaieajvivj − g
n(D + 2)

2c2B
v2 + O(v3),

(2.112)

where the Galilean prefactor is

g ≡ D

D + 2
1 − 2d
1 − d

. (2.113)

The procedures for carrying out this expansion are given in §2.4.1 and in Ap-

pendix D. It is important to check all the moments of this distribution to see if

it gives us what is expected. That is, using ρ = mn for the density and cs = c√
D

for the sound speed, the moments of lattice gas distribution are

m
∑

a

(fa
eq)ideal

LGA = ρ (2.114)
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mc
∑

a

eai (fa
eq)ideal

LGA = ρvi (2.115)

mc2
∑

a

eaieaj (fa
eq)ideal

LGA = ρc2s(1 − g
v2

c2
)δij + gρvivj . (2.116)

The form of the ideal part of the momentum flux density tensor should be [56]

ΠIdeal
ij = pδij + ρvivj . (2.117)

There are two problems encountered here; however I will show that they are

related. Firstly, the single-speed lattice gas almost produces the correct form

for the momentum flux density tensor, except that the diagonal part of Πij

appears to have a spurious dependence on the square of the velocity field,

p =
ρ

D
(c2 − gv2). (2.118)

Secondly, the prefactor g arises as an artifact of the discreteness of the num-

ber variables that breaks Galilean invariance.

2.3.1 Interpreting the Form of the Lattice Gas Pressure

We find that an apparent problem encountered in a single-speed lattice gas of

the pressure (2.118) depending on the square of the velocity field is actually a

consequence of a degeneracy between mass and kinetic energy. Since there is

only a single speed species of particle, all particles carry a single unit of mass

and also a single unit of kinetic energy, so counting the total mass of the system

is equivalent to counting the total kinetic energy of the system. We will see in

Chapter 4 that given a multispeed lattice gas, where mass and kinetic energy are

not degenerate, this form of the pressure (2.118) is actually physically proper.

In fact, it is easy to see why. The reason is that in a classical hydrothermal gas,
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the pressure is

p = (γ − 1)(nE − 1
2
ρv2) (2.119)

where n = Bd is the number density per site, γ is the ratio of the specific heat at

constant pressure to the specific heat at constant volume (that is γ = Cp/Cv),

E is the kinetic energy per particle, and γ − 1 = 2
D . For a single speed lattice

gas, the kinetic energy carried per particle is E = 1
2mc

2 and (2.119) becomes

p =
ρ

D
(c2 − v2). (2.120)

Except for the g-factor, this is identical to the expression for the pressure that

was obtained for a single speed lattice gas (2.118).

Remark:

The lattice gas’ pressure dependence on the bulk flow velocity (2.118) is similar

to that which occurs in a natural hydrofluid (2.120). That is, pLGA = pclassical

provided g = 1. However, in a L = 1 lattice gas the g-factor does not equal

unity. So finding a way to have g = 1 fixes everything.

I have focused much attention on restoring Galilean invariance to the lattice

gas dynamics. It can be repaired in several ways.

The first way to solve this problem is well known in the lattice gas commu-

nity. Working directly in the Boltzmann limit and using only symmetry argu-

ments, it is possible to directly set the g-factor to unity by starting with the the

mesoscopic transport equation (2.102) and specifying a non-Fermi-Dirac single

particle distribution function at the outset (see §2.3.4 and §D.2). The lattice
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Boltzmann equation method is described later in this chapter. Yet, as men-

tioned in the introduction to this dissertation, the lattice Boltzmann equation

method is a finite differencing scheme and suffers from numerical instabilities

due to its lack of detailed balance or semi-detailed balance in the BGK collision

operator.

The second way recently found to solve this problem of a lack of Galilean

invariance in a single speed lattice involves using a finite integer to encode a

momentum state instead of using only a single bit to encode that state. This

type of lattice gas is called an integer lattice gas. The integer lattice gas is

more robust than the lattice Boltzmann equation because the integer lattice gas

collisions obey detailed balance. I devote a full chapter to the integer lattice

gas method (see Chapter 5). Some interesting insights connecting physics and

computation are gained from the integer lattice gas method, particularly when

the integer lattice gas is analyzed from a statistical mechanics viewpoint.

The third way to solve this problem is to use appropriately chosen long-range

interactions. A small nonlocal attractive force between the particles can restore

Galilean invariance in the macroscopic limit. This alternative is discussed in

volume II [101].

2.3.2 Collision Operator in the Mesoscopic Limit

It will be essential to express the collision operator (2.34) in the mesoscopic limit.

Denote the input and output configuration of a collision by s and s′ at some

point in time. With the individual momentum states within a configuration

denoted by na(x, t) where a = 1 . . . B, the probability of a particular input
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configuration with p particles and B − p holes is the product of fa(x, t) and

[1 − fa(x, t)] is

Ps =
∏
a

fna
a (1 − fa)1−na . (2.121)

It is understood that Ps = Ps(x, t) and fa = fa(x, t) so for convenience we leave

off the explicit spacetime dependence of the mesoscopic variables. The particle

distribution can be obtained from the inverse of (2.121) by a weighted sum over

all the incoming configurations, s,

fa =
∑

s

naPs. (2.122)

Let Ts,s′ denote the collision probability for a transition from configuration s

to s′. It will be identical to the transition matrix for the microscopic dynamics.

Because of detailed balance, T is symmetric and all the marginal probabilities

must sum to one:
∑

s Ts,s′ =
∑

s′ Ts,s′ = 1. We can rewrite the sum over input

configurations in (2.122) as a sum over collisions, denoted by
∑

C ≡ ∑
s

∑
s′ ,

by inserting one into the sum

fa =
∑

s

na

∑
s′
Ts,s′Ps =

∑
C

naTPs. (2.123)

The particle distribution (2.122) can also be obtained by summing over the

outgoing configurations, s′,

fa =
∑
s′
n′

aPs′ =
∑
C

n′
aTPs (2.124)

since Ps′ =
∑

s Ts,s′Ps.

Subtracting (2.123) from (2.124) and since Ωmf
a = f ′

a − fa, it follows that

Ωmf
a =

∑
C

(n′
a − na)TPs (2.125)
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or more explicitly

Ωmf
a =

∑
C

(n′
a − na)T

∏
b

fnb

b (1 − fb)
1−nb . (2.126)

A quite interesting consequence of the Boolean nature of lattice gases is that it

is possible to logically rewrite (2.126) noting that fnb

b (1 − fb)1−nb = 1 − nb −

fb +2nbfb so as to reduce the mean-field collision operator to the following form

Ωmf
a =

∑
C

(n′
a − na)T

∏
b

(1 − nb − fb + 2nbfb). (2.127)

This form of the collision operator will be very useful in several derivations

below.

2.3.3 Jacobian of the Collision Operator

In this section consider the eigensystem of the Jacobian of the mean-field colli-

sion operator

Jab ≡ ∂Ωmf
a

∂fb
. (2.128)

The Jacobian is important because it appears in the first relevant term of a

Taylor expansion of the collision operator about the equilibrium distribution,

denoted f (0) or f eq. Expanding the distribution function about its equilibrium

value, f eq

fa = f eq
a + εf (1)

a + O(ε2) (2.129)

so, to first order in the smallness, the collision operator is

Ωmf
a (f) = Ωmf

a (f eq) +
∑

b

[
∂Ωmf

a

∂fb

]
f=feq

(fb − f eq
b ) + O(ε2) (2.130)

or

Ωmf
a (f) =

∑
b

Jab(fb − f eq
b ) + O(ε2). (2.131)
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Ωmf
a (f eq) must vanish since the particle distribution is non-changing under equi-

librium conditions. So in this approximation one can also write

Ωmf
a (f) = Jab(f (0))f (1)

b + O(ε2), (2.132)

We can substitute this form of the mean-field collision operator (2.131) into the

mesoscopic transport equation (2.102)

fa(x+ `ea, t+ τ) = fa(x, t) +
∑

b

Jab(fb − f eq
b ). (2.133)

2.3.4 BGK Approximation

It is worthwhile to consider the simplest form of the dynamical transport equa-

tion for the particle distribution function (2.133) above. The simplest ansatz

for the Jacobian is to choose it to be a diagonal matrix [27]

JBGK
ab = − τ

T δab, (2.134)

where T is the characteristic relaxation time for a point in the system to reach

local equilibrium. This form was introduced in 1954 by D. Bhatnager, Eugene

Gross, and M. Krook [10]. So the collision operator in the BGK approximation

is simply

ΩBGK
a (f) = − τ

T (fa − fa
eq), (2.135)

and is proportional to the difference of the distribution function and its equilib-

rium value. Althougth it is not explicitly clear that the BGK collision operator

allows for any mixing between particle directions, (2.135) does implicitly in-

clude collisional mixing because the equilibrium distribution itself depends on
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the local density and flow velocity, fa
eq = fa

eq(ρ, vi),

ρ = m
∑

a

fa (2.136)

and

vi = c

∑
a eaifa∑

a fa
, (2.137)

which in turn do depend on all particle directions.

Substituting (2.134) into (2.133) gives us the lattice Boltzmann equation in

the BGK approximation

fa(~x+ `êa, t+ τ) = fa(~x, t) − τ

T (fa(~x, t) − fa
eq(~x, t)) . (2.138)

When thought of as a local computing rule, clearly (2.138) provides a quite

straightforward way to evolve the mesoscopic particle dynamics on a parallel

computer. All that one need specify is a simple algebraic form of fa
eq. In §D.2

symmetry arguments are used to determine the form of fa
eq that allows us to

recover ideal fluid dynamics. So primarily for reasons of simplicity, suitability to

parallel computing, and as a way to bypass all microscopic detail (particularly

noisy fluctuations), (2.138) has gained much popularity within the lattice gas

research community. This mesoscopic modeling approach is customarily referred

to as the lattice Boltzmann equation method.

2.3.5 Eigensystem of the Jacobian of the Collision Oper-
ator

The eigenvalues of the Jacobian of the collision operator can be calculated and

the number of these that vanish must equal the number of invariant quantities

in the lattice gas dynamics in the Boltzmann limit. For a single speed lattice
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gas with no rest particles, because of the isosymmetry of the collisions, the

Jacobian matrix is circulant and therefore its elements can be specified by the

difference of their indices, Jab = Ja−b. This property of the Jacobian simplifies

the solution of the eigenvalue equation

∑
b

Ja−bξ
α
b = λαξα

a , (2.139)

with eigenvectors ξα and eigenvalues λα where α = 1, . . . , B. Make the ansatz

that the eigenvectors have the following form

ξα
a = e2πiaα/B . (2.140)

Then inserting (2.140) into (2.139) and taking m = a− b, gives

λα =
∑
m

Jme
2πimα/B . (2.141)

Remark:

In (2.141) it is immediately evident how the eigenvalues are set by the compo-

nents of the collision matrix. The eigenvalues completely determine the fluid’s

emergent behavior. In this way, the details of the microscopic collisions affect

the magnitude of transport coefficients. It is possible to go beyond the Boltzmann

limit, and consider the effect of correlations in the microscopic system [12]. It is

then possible to develop a formal expression for a renormalized J . Then various

approximations to the exact expression are made to obtain improved estimates

of the transport coefficients of the system. In practice this has been done for

only very simple lattice gases.
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For convenience, Dirac bracket notation is used in this section. Let | α〉 be

an eigenket of J and κα the associated eigenvalue so that

J | α〉 = κα | α〉 (2.142)

where orthonormality holds, 〈α | β〉 = δαβ for (α, β) = 1, . . . , B; and closure

holds, | α 〉〈 α |= 1̂. I introduce a direction-eigenket, | a〉, where as usual

a = 1, . . . , B. Then an eigenvector of J in the direction representation is 〈a | α〉.

For a single speed lattice gas with no rest particles J is circulant because

of the isometry of the collisions. Therefore its elements can be specified by the

difference of their indices, Jab = Jb−a. Because of this the matrix element of J

reduces to

〈a | J | b〉 = 〈J | b− a〉, (2.143)

that really defines the eigenket | J〉.

Remark:

The collision operator is a matrix, J . One can define an eigenket | J〉 that is a

single row of J . Since J is circulant, one can therefore completely specify it by

| J〉.

The eigenvectors in the direction representation satisfy

〈a | α〉 = e2πiaα/B . (2.144)

An alternate way of expressing this property of the eigenvectors is

〈α | a〉〈b | α〉 = 〈b− a | α〉. (2.145)

These properties of the Jacobian’s eigenkets and eigenvalues simplify the so-

lution of the eigensystem. Manipulating (2.142), it is possible to express κα
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as

κα = 〈α | J | α〉

= 〈α | a〉〈a | J | b〉〈b | α〉

= 〈a | J | b〉〈α | a〉〈b | α〉

= 〈J | b− a〉〈b− a | α〉

= 〈J | α〉 =
∑

a

Ja exp
(
i
2π
B
aα

)
. (2.146)

Now there are two types of degeneracies that are encountered. First of all, there

will be as many zero eigenvalues as there are conserved quantities in the lattice

gas dynamics. This is easily seen by inserting (2.132) in the mesoscopic collision

equation (2.100)

| f ′〉 =| f〉 + J | f (1)〉. (2.147)

Using (2.142), write

J =
∑
α

κα | α〉〈α | . (2.148)

so

| f ′〉 =| f〉 +
∑
α

κα | α〉〈α | f (1)〉. (2.149)

Clearly, all the scalars 〈α | f (1)〉 for which κα = 0 have no effect on the dynamics

and so are the conserved quantities of the system. This set of eigenvectors with

degenerate eigenvalue of zero span is called the hydrodynamic space, H. The

remaining eigenvectors span what is called the kinetic space, K. However within

K there exists the viscous subspace, V ⊂ K characterized by the degenerate

eigenvalue κη. Therefore J can be explicitly written as a linear combination
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over eigenvectors in the kinetic space

J =
∑
α∈K

κα | α〉〈α | . (2.150)

Its inverse, now well defined, is then just

J−1 =
∑
α∈K

1
κα

| α〉〈α | . (2.151)

This can be separated into a viscous part and a nonviscous part as

J−1 =
1
κη

∑
α∈V

| α〉〈α | +
∑

α∈K3V

1
κα

| α〉〈α | . (2.152)

2.3.6 Collision Set Formulation of J

The convenient form of the collision operator given in (2.127) allows us to di-

rectly calculate the Jacobian, Jab = ∂Ωa

∂fb
, as

Jab =
∑
C

(n′
a − na)(2nb − 1)T

∏
c6=b

fnc
c (1 − fc)

1−nc . (2.153)

We rewrite (2.153) as follows

Jab =
∑
C

(n′
a − na)T

(2nb − 1)
fnb

b (1 − fb)
1−nb

∏
c

fnc
c (1 − fc)

1−nc (2.154)

We can simplify this expression by taking fa → d and by noting that since d is

a constant the terms in the product become

∏
a

dna(1 − d)1−na = dp(1 − d)B−p, (2.155)

where p denotes the number of particles in a particular collision event. This

leads to

Jab =
∑
C

(n′
a − na)Tdp−1(1 − d)B−p−1(2nb − 1)d1−nb(1 − d)nb . (2.156)
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Noting that d1−nb(1− d)nb = (1− 2d)nb + d and using the unimodularity of the

number variable, n2
b = nb, this further simplifies to

Jab =
∑
C

(n′
a − na)Tdp−1(1 − d)B−p−1(nb − d). (2.157)

By the symmetry of the collision probability T (s, s′) the last term vanishes

∑
C

(n′
a − na)Tdp−1(1 − d)B−p−1(−d) = 0, (2.158)

so (2.157) reduces to the simple form

Jab =
∑
C

(n′
a − na)nbTd

p−1(1 − d)B−p−1. (2.159)

The remarkable property of (2.159) is that one can use it to determine the

components of Jab even for complicated situations where J is not circulant.

It is a very important formula. I will use it to calculate the shear viscosity

transport coefficient.

2.4 Bridging the Meso and Macroscales: Chapman-
Enskog Expansions

Three methods are given to derive the single particle distribution function and

the ideal part of the momentum flux density tensor. The first two derivations

of the single particle distribution function given here are similar to that given

by Wolfram [96]. The first method uses the Fermi-Dirac distribution that is

appropriate to a lattice gas system. The second method uses a symmetry argu-

ment that is appropriate in the mean-field limit. In this case, a non-Fermi-Dirac

distribution is found and used to find the form of the single-particle equilibrium

distribution f eq in the lattice Boltzmann equation approach that leads to the
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exact recovery of the Navier-Stokes equation, but sacrifices exact computability.

The third method actually uses an expansion of the fugacity and is the most

direct and straightforward method. A generalization of this case allows us to

specify a non-Fermi-Dirac distribution used in the integer lattice gas that also

leads to the exact recovery of the Navier-Stokes equation while retaining exact

computability.

2.4.1 Mach Number Expansion of the Fugacity

For a single-speed lattice gas, the equilibrium probability for finding a particle

in momentum state mceai at position ~x and at time t is given by a Fermi-Dirac

distribution

f (0)
a =

1
1 + z−1

a

≡ F1(za), (2.160)

where the fugacity is defined as

za = exp [m(αρ + cαu
i eai)] . (2.161)

Note that αρ and αu
i are functions of ρ(~x, t) and vi(~x, t), as will be shown below.

It is straightforward to do a Taylor expansion of the fugacity about zo = emαρ

,

the subsonic limit expansion

za = zo

(
1 +mcαu

i eai +
1
2
m2c2αu

i α
u
j eaieaj + · · ·

)
. (2.162)

Inserting the deviation of the fugacity δz ≡ za − zo into a Taylor expansion of

f
(0)
a about zo then gives

f (0)
a = F1(zo) + F

′
1(z

o)δz +
1
2
F

′′
1 (zo)δz2 + · · · (2.163)

= F1(zo) +
[
zF

′
1

]
z=zo

mcαu
i eai +
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1
2

[
zF

′
1 + z2F

′′
1

]
z=zo

m2c2αu
i α

u
j eaieaj +

O(c3) (2.164)

Inserting (2.164) into the first moment (2.105) and second moment (2.106) of

f
(0)
a gives the following expressions for the particle density

ρ = mBF1(zo) +
m3c2B

2D

[
zF

′
1 + z2F

′′
1

]
z=zo

(αu)2 (2.165)

and the momentum density

ρvi =
m2c2B

D

[
zF

′
1

]
z=zo

αu
i , (2.166)

respectively. Manipulating (2.165) and (2.166) allows us to solve for αu
i and

then F1(zo)

F1(zo) = d− Dd2v2

2c2

[
zF

′
1 + z2F

′′
1

(zF ′
1)2

]
z=zo

, (2.167)

where the reduced density is defined as d ≡ ρ
mB . Therefore, express the equilib-

rium particle distribution as an expansion in ρ and vi by inserting (2.166) and

(2.167) into (2.164) to obtain the desired result

f (0)
a = d

(
1 +

D

c
eaivi + g

D(D + 2)
2c2

Qaijvivj

)
+ O(v3), (2.168)

where

Qaij ≡ eaieaj − δij
D

(2.169)

and the Galilean prefactor is

g = d
D

D + 2

[
zF

′
1 + z2F

′′
1

(zF ′
1)2

]
z=zo

. (2.170)

As a consistency check, write g solely in terms of d to see if the usual result

is obtained. First note that since F1(z) = z
z+1 , the expression in brackets in
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Figure 2.1: Fractional occupation versus fugacity for a classical lattice gas, L = 1.

(2.170) reduces to 1
zo −zo. A plot of the fractional occupation versus the fugacity

is given in Figure 2.1. Then noting that zo = F−1
1 (d) = d

1−d , the expected

result (D.12) is obtained for a single speed lattice gas: g(d) = D
D+2

1−2d
1−d given

in Appendix D. The Galilean prefactor, g(d), is plotted versus the fractional

occupation in Figure 2.2.

In the Appendix D.1, a Chapman-Enskog expansion is carried out to second

order in the velocity for the equilbrium distribution (D.11). So far in this section

an identical result (2.168) has been obtained. Now it is possible to determine a

correction to the particle distribution function accounting for spatial variations

of the velocity field. From (2.100) and (2.101) write the mean field collision

operator as

Ωmf
a (f) = f ′

a − fa = `eai∂if
(0)
a + O(ε2) (2.171)

the so called propagation equation. Multiplying (2.132) by J−1
ab and insert-
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Figure 2.2: Galilean prefactor versus fractional occupation for a classical lattice gas, L = 1
in D = 2 dimensions.

ing (2.171) for Ωa(f) gives the first correction to the equilibrium distribution

function

f (1)
a = `J−1

ab (f (0))ebi∂if
(0)
b . (2.172)

Therefore, since fa = f
(0)
a + f

(1)
a , using (2.172) it follows that

fa =
[
δab + `J−1

ab (f (0))ebi∂i

]
f

(0)
b . (2.173)

And finally, insert the expression for f (0)
a from (2.168) this into (2.173) to obtain

the form of the corrected distribution

fa = d[1 +
D

c
eaivi + g

D(D + 2)
2c2

Qaijvivj + τDJ−1
ab ebiebj∂ivj ] + O(v3). (2.174)

2.4.2 J Theorem

To proceed it is first necessary to simplify the term τDJ−1
ab ebiebj∂ivj in the

above expression (2.174) for the particle distribution by relying on a piece of
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physical intuition. Clearly this term will contribute solely to the shear viscosity

of the macroscopic fluid. The inverse of the Jacobian is defined only over the

kinetic modes of the system (that is, it cannot depend on the hydrodynamic

modes since the hydrodynamic eigenvalues are zero and so J−1 is singular here).

Moreover, because of isometry of collisions and consequent lack of preference in

direction for momentum diffusion, there must exist a subspace of those kinetic

eigenvectors having a degenerate eigenvalue and that contribute positively to

the shear viscosity. We have termed this subspace the viscous subspace, V.

Moreover, since one observes that the projection of the tensor | eiej〉 onto the

space spanned by the kinetic eigenvectors is actually totally contained in V, I

state the following theorem

Theorem 1 The ket | eiej〉 formed from the dyadic eaieaj is an eigenket of the

matrix inverse of the Jacobian of the collision operator J−1, with eigenvalue

1P
ab Jab(êa·êb)2

, for an incompressible fluid. That is, if ∂ivi = 0, the following

eigenequation holds

J−1 | eiej〉 =
B∑

ab Jab(êa · êb)2
| eiej〉 (2.175)

in the kinetic subspace where the inverse Jacobian is not singular.

Proof:

We begin by separating J−1 into its viscous part and a nonviscous part

according to (2.152)

J−1 =
1
κη

∑
α∈V

| α〉〈α | +
∑

α∈K3V

1
κα

| α〉〈α | .
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In general the set of second rank lattice dyadics | eiej〉 for (i, j) = 1, . . . , D have

the property that their projection resides in the space H + V, so that one may

write

| eiej〉 =
∑
α∈H

| α〉〈α | eiej〉 +
∑
α∈V

| α〉〈α | eiej〉. (2.176)

Consequently one can determine 〈eiej | J−1 | eiej〉 directly by applying (2.176)

from the left and right onto (2.152)

〈eiej | J−1 | eiej〉 =
1
κη

∑
α∈V

〈eiej | α〉〈α | eiej〉. (2.177)

We can simplify the R.H.S. of this expression. First, sum over all eigenkets, and

rearrange terms as follows

〈eiej | J−1 | eiej〉 =
1
κη

∑
ab

eaieajebiebj

∑
α

ξα
a ξ

b
α, (2.178)

Now because of closure of the eigenkets,
∑

α ξ
α
a ξ

b
α = δab and using the identity

for the product of four lattice vectors (2.18), it follows that

〈eiej | J−1 | eiej〉 =
1
κη

B

D(D + 2)
∆(4)

ijij , (2.179)

Since ∆ijij = D(D + 2), it is immediately clear that

〈eiej | J−1 | eiej〉 =
B

κη
. (2.180)

We can similarly separate J into its viscous part and a nonviscous part

J = κη

∑
α∈V

| α〉〈α | +
∑

α∈K3V
κα | α〉〈α |,

and determine 〈ekel | J | ekel〉 directly by applying (2.176) from the left and

right onto (2.4.2)

〈ekel | J | ekel〉 = κη

∑
α∈V

〈ekel | α〉〈α | ekel〉. (2.181)

67



Now since the lattice vectors eai are all of unit length, and because of closure

of the eigenkets | α〉, in a similar fashion it follows that

〈eiej | J | eiej〉 = κηB. (2.182)

Multiplying (2.180) and (2.182) gives

〈ekel | J | ekel〉〈eiej | J−1 | eiej〉 = B2, (2.183)

which upon rearranging terms implies

J−1 | eiej〉 =
B

〈ekel | J | ekel〉 | eiej〉. (2.184)

This completes the proof of Theorem 2.175. QED

Defining the eigenvalue

λ ≡ −`B∑
ab Jab(êa · êb)2

=
−`
B

∑
ab

J−1
ab (êa · êb)2, (2.185)

it is possible to write the J-theorem as

J−1 | eiej〉 = −λ

`
| eiej〉. (2.186)

Using this theorem by substituting (2.186) into the corrected distribution func-

tion (2.174) of the previous section gives us the simplification

fa = d[1 +
D

c
eaivi + g

D(D + 2)
2c2

Qaijvivj − D

c
λeaieaj∂ivj ] + O(v3). (2.187)

We have relations for λ in terms of κη

λ =
−`B

κη

∑
α∈V〈eiej | α〉〈α | eiej〉 =

−`
Bκη

∑
α∈V

〈eiej | α〉〈α | eiej〉. (2.188)

This method of determining λ is most direct, but it relies on knowing the viscous

eigenvalue, κη, and the associated viscous eigenvectors of J . When J is circulant
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this is readily known, so (2.188) would be quite convenient. However, in more

complicated lattice gases, such as a multispeed lattice gas or a finite-integer

lattice with a rest channel, J is not circulant. Moreover, since the size of J is

quite large for these systems, the eigenvalue problem cannot be generally solved

(for instance, a multispeed fchc lattice gas would have at least 24+24+1=49

bits, so J would be a 49 × 49 matrix). Therefore, a more practical way of

determining λ for more complex systems is needed. This is accomplished as

follows.

Inserting (2.159) into the R.H.S., we immediately obtain

λ =
−`B∑

C Td
p−1(1 − d)B−p−1

∑
ab(n′

a − na)nb(êa · êb)2
. (2.189)

and now λ is computed solely with a supplied collision set. Note if J is not cir-

culant and it is not straightforward to solve for its eigenvalues and eigenvectors,

(2.189) still gives us a direct way to determine λ and so it is an important result.

The benefit of this way to find λ is that it provides a new generalizable way to

determine the viscosity of a lattice gas, generalizable to an integer lattice gas

for example.

2.5 Macrodynamics

The macroscopic equations of motion are then determined from mass conserva-

tion (continuity equation)

∂tρ+ ∂i(ρvi) = 0 (2.190)
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and momentum conservation (Euler’s equation)

∂t(ρvi) + ∂jΠij = 0. (2.191)

Note that in the incompressible limit where the density is constant, ∂tρ = 0, so

there is divergence-free flow.

Now following Landau and Lifshitz [56], the momentum flux density tensor

is written in standard form as

mc2
∑

a

eaieajfa = pδij + ρvivj − σ′
ij (2.192)

where in (2.192) the first two terms represent the ideal part of the momen-

tum flux density tensor and σ′
ij = η(∂ivj − ∂jvi) is the viscous stress tensor.

Alternatively the momentum flux density tensor may be written

Πij = mc2
∑

a

eaieajfa = −σij + ρvivj , (2.193)

where σij is the pressure stress tensor

σij = −pδij + η (∂ivj − ∂jvi) . (2.194)

Given a non-divergent flow (∂jvj = 0) appropriate to the incompressible fluid

limit, it is possible to write

Πij = pδij + ρvivj + η∂jvi. (2.195)

Substituting (2.195) into Euler’s equation (2.191), gives us the Navier-Stokes

equation for a viscous fluid

ρ (∂tvi + vj∂jvi) = −∂ip+ η∂2vi. (2.196)
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In this section I calculate a general expression for the transport coefficient for

momentum diffusion within a lattice gas in the continuum limit, that is, the

shear viscosity, η, for a single speed lattice gas on a Bravais lattice. Two different

forms are presented. We use our new J-theorem (2.175) to calculate the shear

viscosity quite directly. The method is readily generalizable to the calculation

of the shear viscosity of more complex lattice gas systems, such as an integer

lattice gas. In fact, this has been the motivation to find a new way to calculate

this transport coefficient, since the shear viscosity of an integer lattice gas has

recently been observed, by exact numerical computations, to be lower than in a

traditional lattice gas.

The first form given for the shear viscosity is

η = ρ
`2

τ

1
(D + 2)

(
− 1
B

〈eiej | J−1 | eiej〉 − 1
2

)
. (2.197)

This expression for η, though simpler, is similar to the expression for the shear

viscosity given recently by Boghosian and Taylor [13] in 1995. This method is

quite practical for a single speed lattice gas with no rest particles because J is

circulant owing to the isometry of the collisions.

The second form given for the shear viscosity is

η = ρ
`2

τ

1
(D + 2)

(
− B

〈eiej | J | eiej〉 − 1
2

)
. (2.198)

This form directly leads to an expression for the shear viscosity given by Hénon

[49] in 1990 for a D-dimensional lattice gas.

In any lattice gas simulation, one typically obtains a realization of the macro-

scopic dynamical variables by block averaging in both space and time over the
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microscopic variables. In this way, for example, a momentum map can be pro-

duced so that the dynamic evolution the the fluid can be monitored. The size

of the coarse grain block affects the resolution with which one can observe the

system but does not at all affect the underlying dynamics. If too small a coarse

grain block size is used, more fluctuations in the macroscopic variables occur.

2.5.1 Derivation of the Continuum Equations

For each additive conserved quantity of the microdynamics, there exists a macro-

scopic variable that is expressed as a moment of the mesoscopic particle distri-

bution function. The associated macroscopic variable is a field with a value at

every spacetime point of the continuum and the evolution of this field is governed

by a particular dynamical partial differential equation that in turn is obtained

by taking moments of the mesoscopic Boltzmann equation. Since by construc-

tion one knows the form of the conserved quantities in terms of the mesoscopic

distribution function, and since one knows the mesoscopic Boltzmann equation

to second order in ε ∼ δx2 ∼ δt for the lattice gas system, it is a straightforward

procedure to derive the continuum equations of motion.

We are now ready to determine the macroscopic equations of motion using

the lattice Boltzmann equation (2.104) and the corrected distribution function

(2.187) along with definitions for mass density (2.105) and momentum density

(2.106). Since
∑

a Ωmf
a = 0, the zeroth moment of (2.104) is

∂tm
∑

a

fa + ∂imc
∑

a

eaifa +
`2

2τ
∂i∂j

∑
a

eaieajfa = 0. (2.199)

72



This reduces to mass continuity

∂tρ+ ∂iρvi + O(v2) = 0, (2.200)

which in the incompressible limit (ρ constant) implies divergence-free flow (∂ivi =

0). Since
∑

a eaiΩmf
a = 0 too, the first moment of (2.104) is

∂tmc
∑

a

eaifa + ∂jmc
2
∑

a

eaieajfa +
`2

2τ
∂j∂kmc

∑
a

eaieajeakfa = 0. (2.201)

This reduces to Euler’s equation

ρ∂tvi + ∂jΠij = 0, (2.202)

where the momentum flux density is

Πij = pδij + gρvivj − ρcλ

D + 2
∂jvi +

`2

2τ
ρ

(D + 2)
∂jvi (2.203)

or

Πij = pδij + gρvivj − ρc

D + 2
(λ− `

2
)∂jvi. (2.204)

The shift in λ is a constant negative contribution to the shear viscosity by a

lattice effect. With sound speed cs ≡ c√
D

, identify the pressure as

p = ρc2s

(
1 − g

v2

c2

)
. (2.205)

Finally, inserting (2.204) into Euler’s equation (2.202), the Navier-Stokes equa-

tion for viscous incompressible flow emerges

ρ∂tvi + gρ∂j(vivj) = −∂ip+ η∂2vi (2.206)

with shear viscosity

η =
ρc

(D + 2)

(
λ− `

2

)
. (2.207)
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Since it is known how to determine the value of λ, using (2.188) or (2.189), the

shear viscosity of a lattice gas is completely determined as well.

2.5.2 Recalculating the Shear Viscosity Transport Coeffi-
cient

The derivation presented here is based on one originally given by Hénon [49]

for a D-dimensional lattice gas and it will confirm the result obtained in the

previous section.

In the Chapman-Enskog expansion above, one essentially decomposes the

particle distribution function into two parts: fa = f (0) + f (1). Here it is de-

composed into two different parts, its background value plus its deviation from

the background: fa = d + δfa. With this decomposition the collision operator

(2.126) becomes

Ωa =
∑
C

(n′
a − na)T

∏
b

(d+ δfb)nb (1 − d− δfb)
1−nb . (2.208)

Since δf is small, use the following binomial expansions (exact since na is

Boolean)

(d+ δfa)na = dna + nad
na−1δfa (2.209)

[(1 − d) − δfa]1−na = (1 − d)1−na − (1 − na)(1 − d)−naδfa (2.210)

which gives us

Ωa =
∑
C

(n′
a − na)T

∏
b

dnb(1 − d)1−nb

[
1 +

nb − d

d(1 − d)
δfb

]
. (2.211)

Thus, we obtain

Ωa =
∑
C

(n′
a − na)Tdp(1 − d)B−p

[
1 +

∑
b

nb − d

d(1 − d)
δfb

]
, (2.212)
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where the following approximation holds provided all xi � 1

∏
i

[1 + xi] ' 1 +
∑

i

xi. (2.213)

By the symmetry of the collision probability T (s, s′) the first term vanishes

∑
C

(n′
a − na)Tdp(1 − d)B−p = 0

and the last term also vanishes since
∑

a δfa = 0, so we arrive at the fundamental

collision equation for δfa

Ωa =
∑
C

(n′
a − na)Tdp−1(1 − d)B−p−1

∑
b

nbδfb. (2.214)

Now, using the corrected distribution (2.174) and our ansatz (2.175), one can

write an expression for the deviation of the particle distribution function8

δfa =
D

c
eaivi − dλD

c
eaieaj∂ivj + O(v2). (2.215)

Inserting (2.215) into (2.214) and only keeping terms linear in the velocity gives

Ωcollision
a = −dλD

c

∑
C

(n′
a − na)Tdp−1(1 − d)B−p−1

∑
b

nbebiebj∂ivj . (2.216)

Now from the propagation equation (2.171) it follows

Ωpropagation
a = `eai∂if

(0)
a =

d`D

c
eaieaj∂ivj . (2.217)

Equating our two expressions for the collision operator, Ωcollision
a = Ωpropagation

a , it

is possible to solve for λ

λ =
−`∑

C(n′
a − na)Tdp−1(1 − d)B−p−1

∑
b nb(êa · êb)2

. (2.218)

8Note that
P

a δfa does indeed vanish since the flow is divergenceless, ∂ivi = 0.
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Note that the denominator of (2.218) depends on the index a. Since the spatial

lattice is isotropic, it does not matter which direction is used; any particu-

lar direction can be chosen without loss of generality. However, to make the

connection with our previous expression for λ, we sum over all lattice vectors.

Therefore, it is preferable to write this as

λ =
−`B∑

C

∑
a(n′

a − na)Tdp−1(1 − d)B−p−1
∑

b nb(êa · êb)2
. (2.219)

This result is exactly (2.189) found directly in §2.4.2 and provides a good con-

sistency check.

Inserting (2.219) into (2.207), we get the shear viscosity of a single-speed

lattice gas is expressed explicitly in terms of the particle occupation number

variables

η =
ρ`c

D + 2

(
B∑

nn′ dp−1(1 − d)B−p−1T (n, n′)
∑

ab(na − n′
a)nb(êa · êb)2

− 1
2

)
(2.220)

where T (n, n′) is the probability of a collision with n incoming and n′ outgoing

configurations. This is the most generally useful expression for this transport

coefficient.

2.5.3 Variation of Viscosity Minima with Lattice Coordi-
nation Number

Three cases are presented for the kinematic viscosity versus reduced density for

two-dimensional systems with B = 4, B = 6, and B = 8 number of momentum

states. No solutions exist for odd B. All possible collisions are included by

finding all permutations of the input configurations that conserve momentum.
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Figure 2.3: Kinematic shear viscosity, ν(d), versus reduced density, d = n/B, for two-
dimensional lattice gases with B=4, 6, and 8 momentum states. Viscosity decreases with
increasing B.

Therefore the collisions are particle-hole symmetric and the minimum value of

the kinematic viscosity occurs at half filling: νB=4(0.5) = 0.125, νB=6(0.5) =

0.0972, and νB=8(0.5) = 0.0908. The kinematic viscosities are

νB=4(d) =
1
4

(
1

4d̃d
− 1

2

)
(2.221)

νB=6(d) =
1
4

(
1

3d̃3d+ 12d̃2d2 + 3d̃d3
− 1

2

)
(2.222)

νB=8(d) =
1
4

(
1

2( 4
3 d̃

5d+ 8d̃4d2 + 92
5 d̃

3d3 + 8d̃2d4 + 4
3 d̃d

5)
− 1

2

)
,(2.223)

where the reduced hole density is d̃ ≡ 1 − d. Plots of these results are overlayed

in Figure 2.3. Calculations have been done for up to B = 12 but no significant

decrease in the viscosity is observed.
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Chapter 3

The Simplest Lattice-Gas
(L=1)

3.1 Introduction

The discovery that a very simple discrete model, the Frisch, Hasslacher, and

Pomeau (FHP) lattice gas model [41], using only six bits of memory at each

point in space reproduces hydrodynamics in its macroscopic limit has stimulated

many investigations of the subject of discrete kinetic equations. This subject,

broadly termed lattice gas methods, has to date expanded its scope beyond in-

compressible hydrodynamics to thermodynamics, multiphase phenomena, mag-

netohydrodynamics, reaction-diffusion systems, and seems to be continuing its

growth. Given the conceptual importance of a simple lattice gas model with

its ability to simulate so much, the FHP lattice gas is presented here. The

FHP lattice gas has three invariants: the total mass and the two components of

momentum.

It is well known that symmetric 3-body collisions must be included along

with the FHP model’s even and odd chirality 2-body collisions to achieve the
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correct macroscopic limit. However, the fact that both even and odd 2-body

collision possibilities are present dictates that when a 2-body collision occurs, a

coin toss must also occur to determine the outgoing state. This coin toss does not

make the FHP model irreversible. Clearly if the model is constrained to have a

definite chirality, say for example 2-body collisions generated by π
3 rotations are

retained while 2π
3 collisions are discarded, then the lattice gas would be strictly

reversible. But does this additional constraint of a fixed chirality engender any

spurious invariants? The answer is it does not.

When introduced to the hexagonal lattice gas model for the first time, one

inevitably asks the following question: Why does the discrete dynamics fail to

reproduce the correct continuum hydrodynamic limit when implemented on a

square lattice? One finds that four momentum states are insufficient by noting

that the derivation in chapter 2 of the correct form of the Navier-Stokes equation

(2.206) relied on the expansion of the momentum flux density tensor in terms

of the isotropic tensor E(2n). Each isotropic tensor itself could be expanded in

products of two-dimensional Kronecker deltas (2.20). In particular for D = 2,

E(4) =
B

8
(δijδkl + δikδjl + δilδkj)

=
B

8
(3x̂x̂x̂x̂+ 3ŷŷŷŷ + x̂ŷŷx̂+ ŷx̂x̂ŷ + x̂ŷx̂ŷ + ŷx̂ŷx̂+ x̂ŷŷx̂+ ŷx̂x̂ŷ) .

Refer to §2.1.2 to see why this is so. For the square lattice case, B = 4, the lattice

vectors are orthogonal and E(4) cannot be decomposed into two-dimensional

Kronecker deltas. Instead

E4
ijkl|B=4 ∝ δijkl = x̂x̂x̂x̂+ ŷŷŷŷ

79



where δijkl is a four-dimensional Kronecker delta [96] illustrating the lack of

isotropy of the momentum flux density on a square lattice gas. Since B = 5 is

not space filling, the next possible choice is B = 6 or the hexagonal lattice gas

system.

3.2 Using the Tools of the Trade

3.2.1 Triangular Lattice

x 

y 

(5,2) 

(2,4) 

(2,3) (1,3) 

(1,1) 

(1,5) 

(3,4) 

(3,3) 
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(2,5) 

(4,4) (1,4) 

(2,2) 

(1,3) 

(3,5) 
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(4,3) 

(3,2) 

(1,4) 

(5,5) (4,5) 
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(1,5) 
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l 3 
2 

a = 1 a = 2 

a = 3 

a = 4 a = 5 

a = 6 

(a) (b) 

Figure 3.1: Triangular Lattice Convention: (a) Lattice vector label convention; (b) Trian-
gular lattice convention with lattice directions a = 3 up and a = 6 down. Coordinates above
the lattice nodes are (i, j) memory array indices.

In a triangular lattice there are six vectors, enumerated in this section by

the convention

êa =
(
cos

πa

3
,− sin

πa

3

)
, (3.1)
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where a = 1, 2, . . . , 6. The spatial coordinates of the lattice sites may be ex-

pressed as follows

xij =

(
i− 1

2
(j mod 2),

√
3

2
j

)
(3.2)

where i and j are rectilinear indices that specify the data memory array location

used to store the lattice gas site data.

Let s = (j mod 2)(r mod 2). Given a particle at site (i, j), it may be shifted

r lattice units away to a remote site (i′, j′) by the mapping

(i′, j′)1 =
(
i+

r + 1
2

− s, j − r

)
(3.3)

(i′, j′)2 =
(
i− r

2
− s, j − r

)
(3.4)

(i′, j′)3 = (i− r, j) (3.5)

(i′, j′)4 =
(
i− r

2
− s, j + r

)
(3.6)

(i′, j′)5 =
(
i+

r + 1
2

− s, j + r

)
(3.7)

(i′, j′)6 = (i+ r, j) (3.8)

where (i′, j′)a denotes the shifted site, that is, (i, j) → (i′, j′) with a shift along

vector ~r = rêa and where division by 2 is considered integer division.

These streaming relations are useful for implementing a lattice gas in a struc-

tured language such as the C-language. An implementation on the connection

machine CM-5 in the C-language and DPEAC uses these relations for all ad-

dress computations [105]. In these streaming relations, the modulus operator

is base 2 because a two-dimensional triangular lattice embedded into a square

three-dimensional mesh is pleated.

The simplest way to see this embedding is to define z = (j mod 2). Therefore
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Table 3.1: Streaming for 2D Hex Lattice Embedded a into 3D Mesh

Direction x y z
Pleat 0
1 0 0 1
2 0 -1 1
3 0 -1 0
4 1 -1 1
5 1 0 1
6 0 1 0
Pleat 1
1 -1 1 -1
2 -1 0 -1
3 0 -1 0
4 0 0 -1
5 0 1 -1
6 0 1 0

the third dimension along the z-axis is narrow, only one lattice distance wide.

Half of the lattice sites are at z = 0 and the other half are at z = 1. This divides

the triangular lattice into two sublattices that are referred to as pleat 0 and pleat

1. Table 3.1 lists the components of the data translation vectors, or kicks, for

each stream direction, a = 1, 2, . . . , 6, for both pleats. This kick table was used

for a CAMForth implementation on the CAM-8 and a C* implementation on

the CM-5 [105]. This is equivalent to our general streaming relations for the

case when r = 1. The usefulness of this kind of embedding is that if the data

for any one of the sublattices is rendered for display, it can be drawn in simple

raster form and fluid structures will appear correctly, e.g. a sound pulse will

appear circular.

In a triangular lattice there are six lattice vectors enumerated by

êa =
(
cos

πa

3
, sin

πa

3

)
, (3.9)
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or explicitly

ê1 = (
1
2
,

√
3

2
)

ê2 = (−1
2
,

√
3

2
)

ê3 = (−1, 0)

ê4 = (−1
2
,−

√
3

2
)

ê5 = (
1
2
,−

√
3

2
)

ê6 = (1, 0).

We therefore have the following two lattice kets

| ex〉 =
1
2
[1,−1,−2,−1, 1, 2]

| ey〉 =
√

3
2

[1, 1, 0,−1,−1, 0]

We will need the following ket obtained by multiplying ex and ey component by

component

| exey〉 =
√

3
4

[1,−1, 0,−1, 1, 0]. (3.10)

Similarly

| exex〉 =
√

1
4

[1, 1, 4, 1, 1, 4] (3.11)

| eyey〉 =
√

3
4

[1, 1, 0, 1, 1, 0]. (3.12)

At this point, without any specification of the collision set or any knowledge of

the collision operator, one can still write down the eigenvectors of the Jacobian

of the collision operator. Using (2.144) the eigenkets are

| α〉 = [εα, (−ε∗)α, (−1)α, (−ε)α, (ε∗)α, 1] (3.13)
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or explicitly

| 1〉 = [ε,−ε∗,−1,−ε, ε∗, 1]

| 2〉 = [−ε∗,−ε, 1,−ε∗,−ε, 1]

| 3〉 = [−1, 1,−1, 1,−1, 1]

| 4〉 = [−ε,−ε∗, 1,−ε,−ε∗, 1]

| 5〉 = [ε∗,−ε,−1,−ε∗, ε, 1]

| 6〉 = [1, 1, 1, 1, 1, 1],

where ε ≡ exp(iΠ3 ) and ε∗ ≡ exp(−iΠ3 ). For later convenience in computing the

eigenvalues, define a new set of eigenkets as follows

| 1′〉 = | 6〉

| 2′〉 =
1
i
√

3
(| 1〉− | 5〉)

| 3′〉 = | 1〉+ | 5〉

| 4′〉 = | 2〉− | 4〉

| 5′〉 =
1
i
√

3
(| 2〉+ | 4〉)

| 6′〉 = | 3〉,

or explicitly

| 1′〉 = [1, 1, 1, 1, 1, 1] =| exex〉+ | eyey〉

| 2′〉 = [1, 1, 0,−1,−1, 0] =
2√
3

| ey〉

| 3′〉 = [1,−1,−2,−1, 1, 2] = 2 | ex〉

| 4′〉 = [1, 1,−2, 1, 1,−2] = 2(| eyey〉− | exex〉)
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| 5′〉 = [1,−1, 0, 1,−1, 0] =
4√
3

| exey〉

| 6′〉 = [−1, 1,−1, 1,−1, 1].
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To satisfy normality one must have

〈1′ | =
1
6

| 6〉†

〈2′ | =
1

i4
√

3

(| 1〉†− | 5〉†)
〈3′ | =

1
12
(| 1〉†+ | 5〉†)

〈4′ | =
1
12
(| 2〉†− | 4〉†)

〈5′ | =
1

i4
√

3

(| 2〉†+ | 4〉†)
〈6′ | =

1
6

| 3〉†,

where the dagger indicates column form.

3.2.2 Mean-Field Calculation of the Shear Viscosity

1 0 0 1 0 0 -> 0 0 1 0 0 1 
 
0 1 0 0 1 0 -> 1 0 0 1 0 0 
  
0 0 1 0 0 1 -> 0 1 0 0 1 0 
 

1 0 0 1 0 0 ->  0 1 0 0 1 0 
 
0 1 0 0 1 0 ->  0 0 1 0 0 1 
  
0 0 1 0 0 1 -> 1 0 0 1 0 0  
 

1 0 1 0 1 0 -> 0 1 0 1 0 1 
  
0 1 0 1 0 1 -> 1 0 1 0 1 0  

Even Chirality Odd Chirality 

Figure 3.2: Enumeration of FHP 2-body collisions, even and odd chirality, and 3-body
collisions.

The possible two-body collisions are illustrated in Figure 3.2, the blocks la-

beled even and odd chirality, and also in Figure 3.6, which has three particles

on-site but with only two of the three particles undergoing a collision. This is re-

ferred to as 2-body collisions with a spectator particle. The original FHP-model

[41] did not include collisions with spectators and instead included the two pos-
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sible 3-body collisions, as illustrated in Figure 3.2. For two-dimensional flow,

there are three invariants, the mass, and two components of the momentum.

With only the 2-body collisions in Figure 3.2, there is an additional invariant:

the difference in the particle number along each of the three lattice directions

give three conserved momenta instead of two. The 3-body collisions in Figure 3.2

are included in the FHP-model to remove this spurious invariant. Consequently,

the collisions enumerated in Figure 3.2 are a sufficient set to produce hydrody-

namic behavior in the continuum limit. The associated collision operator for

the FHP-model is

ΩFHP
a =

1
2
Qa(1, 4) +

1
2
Qa(2, 5) −

Qa(3, 6) +Qa(1, 3, 5) −Qa(2, 4, 6). (3.14)

Writing this out explicitly

ΩFHP
a=1 =

1
2
f2f5(1 − f1)(1 − f3)(1 − f4)(1 − f6) +

1
2
f3f6(1 − f1)(1 − f2)(1 − f4)(1 − f5) −

f1f4(1 − f2)(1 − f3)(1 − f5)(1 − f6) +

f2f4f6(1 − f1)(1 − f3)(1 − f5) −

f1f3f5(1 − f2)(1 − f4)(1 − f6).

Consider the following input collision set, denoted f ,

f = {{1, 0, 0, 1, 0, 0}, {0, 1, 0, 0, 1, 0}, {0, 0, 1, 0, 0, 1},

{1, 0, 1, 0, 1, 0}, {0, 1, 0, 1, 0, 1}}. (3.15)
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Then the output collision set, denoted by f ′, can be computed by using (3.14),

the collision operator

f ′ = f + Ω

= {{0,
1
2
,
1
2
, 0,

1
2
,
1
2
}, {1

2
, 0,

1
2
,
1
2
, 0,

1
2
},

{1
2
,
1
2
, 0,

1
2
,
1
2
, 0}, {0, 1, 0, 1, 0, 1}, {1, 0, 1, 0, 1, 0}}

(3.16)

Now, to completely specify the collision set, {f, f ′}, one can use formula (2.159)

to compute the Jacobian’s elements

| J〉 = [−d(1 − d)2,
1
2
d(1 + d)(1 − d)2,

1
2
d(1 − 3d)(1 − d)2,

1
2
d(1 − 2d)(1 − d)2,

1
2
d(1 − 3d)(1 − d)2,

1
2
d(1 + d)(1 − d)2] (3.17)

From (2.141) it immediately follows that the eigenvalues of J are

〈J | 1′〉 = 0

〈J | 2′〉 = 0

〈J | 3′〉 = 0

〈J | 4′〉 = −3d(1 − d)3

〈J | 5′〉 = −3d(1 − d)3

〈J | 6′〉 = 6d2(1 − d)2.

Note that 〈J | 1′〉 corresponds to mass conservation, 〈J | 2′〉 to y-momentum

conservation, and 〈J | 3′〉 to x-momentum conservation. The degenerate viscous
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eigenvalue κη = −3d(1 − d)3 is immediately identified. Therefore, according to

(2.188) and using (3.10), it follows that

λ =
1

3d(1 − d)3
∑

α∈{4′,5′}
〈exey | α〉〈α | exey〉

=
1

4d(1 − d)3
.

Finally, according to (2.207), the result is obtained

ηFHP = ρ
`2

τ

(
1

12d(1 − d)3
− 1

8

)
. (3.18)

3.2.3 An Example of a Deterministic Lattice-Gas

When implementing a lattice gas on a parallel computer it is most convenient to

use deterministic updating rules. This is important for several reasons. First,

using deterministic rules, the lattice gas is strictly reversible, and can possess

a time-reversal invariance with respect to a parity operation on the momen-

tum states. Therefore, such a lattice gas mimics the time reversal invariance

characterizing natural physical laws of motion. The reversibility allows one to

run the gas dynamics forward to some state and then back to its initial state.

As a practical matter, this is a good way to check if the local rules are coded

correctly. Second, the generation of random numbers typically takes time and

using random bits increases the number of states that the rule must deal with.

For these reasons deterministic local rules are preferred. Two-dimensional lat-

tice gas collisions can be categorized by their even or odd chirality. Using even

chirality collisions on even time steps and odd chirality collisions on odd time

steps eliminates the need for the random coin toss used in the FHP model. The
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collision operator that produces deterministic 2-body and 3-body symmetric

collisions is the following

Ωa = Qa(1, 4) −Qa(0, 3) +Qa(1, 3, 5) −Qa(0, 2, 4), (3.19)

which is written in expanded form as

Ω1 = f3 f6 (1 − f1) (1 − f2) (1 − f4) (1 − f5) − (3.20)

f1 f4 (1 − f2) (1 − f3) (1 − f5) (1 − f6) +

f2 f4 f6 (1 − f1) (1 − f3) (1 − f5) −

f1 f3 f5 (1 − f2) (1 − f4) (1 − f6)

Consider the following input collision set, denoted f ,

f = {{1, 0, 0, 1, 0, 0}, {0, 1, 0, 0, 1, 0}, {0, 0, 1, 0, 0, 1},

{1, 0, 1, 0, 1, 0}, {0, 1, 0, 1, 0, 1}}. (3.21)

Then the output collision set, denoted by f ′, can be computed by using (3.19),

the collision operator

f ′ = f + Ω

= {{0, 1, 0, 0, 1, 0}, {0, 0, 1, 0, 0, 1}, {1, 0, 0, 1, 0, 0},

{0, 1, 0, 1, 0, 1}, {1, 0, 1, 0, 1, 0}} (3.22)
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Using (2.159) the Jacobian may be calculated

J = [ − d(1 − d)2, d2(1 − d)2, d(1 − 2d)(1 − d)2, (3.23)

−d(1 − 2d)(1 − d)2,−d2(1 − d)2, d(1 − d)2]

Using (2.141), the eigenvalues of J may be directly calculated

〈J | 1′〉 = 0

〈J | 2′〉 = 0

〈J | 3′〉 = 0

〈J | 4′〉 = −6d(1 − d)3

〈J | 5′〉 = −2d(1 − d)3

〈J | 6′〉 = 6d2(1 − d)2.

There are only three zero eigenvalues, so this chiral lattice gas model possesses

only three invariants with eigenvectors corresponding to the total mass and the

two components of momentum. Using

λ =
∑

α∈{4′,5′}

−`
κα

〈eiej | α〉〈α | eiej〉. (3.24)

it becomes

λ =
`

6d(1 − d)3
〈exey | 4′〉〈4′ | exey〉 +

`

2d(1 − d)3
〈exey | 5′〉〈5′ | exey〉

=
3`

8d(1 − d)3
.

Finally, according to (2.207), chiral shear viscosity is

ηchiral = ρ
`2

τ

(
3

32d(1 − d)3
− 1

8

)
. (3.25)
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So by this example of a two dimensional lattice gas on a triangular lattice, the

viscosity of a chiral lattice gas is slightly higher than that for a nonchiral or

nondeterministic gas; compare (3.18) with (3.25).

It is interesting that although the chirality of its collisions is definite, no

spurious invariants appear in the Boltzmann limit and, particularly, that this

lattice gas is reversible. So this chiral lattice gas is even simpler that the FHP

model and requires no random coin tosses. The methodology of successively

switching between left and right-handed collision tables is therefore justified, at

least in the Boltzmann limit. Switching between left and right-handed collision

tables is done on the CAM-8 since there is no additional time or memory cost

(per module) incurred in using multiple tables because of the double buffering

of the lookup tables [63]. The observation that a fixed chirality lattice gas

model can have the correct macroscopic limit is interesting. More importantly,

in the case of the three-dimensional face-centered hypercubic (fchc) lattice [40],

this observation may help to reduce the number of collisions. There are 24

nearest neighbors in fchc, so a full collision table has 224 = 16mega entries.

For parallel computers such as the CAM-8, implementing such a large collision

table is inefficient. Compression of the fchc collision table has been explored[82].

Fixing the fchc collision table chirality may allow additional compression.
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3.2.4 An Example of a Spurious Invariant

The FHP-model without 3-body collisions is a good example of a lattice gas

with an unwanted spurious invariant. The collision operator in this case is

Ω2-body
a =

1
2
Qa(1, 4) +

1
2
Qa(2, 5) −Qa(3, 6).

Writing this out explicitly we have

Ω2-body
a=1 =

1
2
f2f5(1 − f1)(1 − f3)(1 − f4)(1 − f6) +

1
2
f3f6(1 − f1)(1 − f2)(1 − f4)(1 − f5) −

f1f4(1 − f2)(1 − f3)(1 − f5)(1 − f6).

Consider the following input collision set, denoted f ,

f = {{1, 0, 0, 1, 0, 0}, {0, 1, 0, 0, 1, 0}, {0, 0, 1, 0, 0, 1}}. (3.26)

Then the output collision set, denoted by f ′, can be computed by using (3.14),

the collision operator

f ′ = f + Ω

= {{0,
1
2
,
1
2
, 0,

1
2
,
1
2
}, {1

2
, 0,

1
2
,
1
2
, 0,

1
2
}, {1

2
,
1
2
, 0,

1
2
,
1
2
, 0}

Using formula (2.159) gives the Jacobian’s elements as

| J〉 = [−d(1 − d)3,
1
2
d(1 − d)3,

1
2
d(1 − d)3,−d(1 − d)3,

1
2
d(1 − d)3,

1
2
d(1 − d)3] (3.27)
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Now, using (2.141) we get the eigenvalues of J

〈J | 1′〉 = 0

〈J | 2′〉 = 0

〈J | 3′〉 = 0

〈J | 4′〉 = −3d(1 − d)3

〈J | 5′〉 = −3d(1 − d)3

〈J | 6′〉 = 0.

There are four zero eigenvalues, one too many, so as is known, a lattice gas on a

triangular lattice without 3-body collisions is insufficient for recovering correct

hydrodynamic behavior in the macroscopic limit.

3.3 Some Numerical Fluid Experiments

3.3.1 Measurement of Shear Viscosity

Method 1: Forced Parabolic Profile

To numerically measure the shear viscosity of a lattice gas I will consider a

system with toroidal boundary conditions and square-wave forcing. This is a

flow condition known as Poiseuille flow [32]. This method has been previously

applied to lattice gases by Kadanoff et. al. [51]. We give a derivation of a

theoretical expression for the shear viscosity in §2.5 and §2.5.2. The numerical

measurements allow us to check the consistency of our work. This numerical

technique will be very valuable for measuring the shear viscosity of complicated

fluids: for examples, a thermodynamic system described later in this volume or

a multiphase system described later in Volume II [101]. An interesting question
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Figure 3.3: Momentum profiles for Poiseuille flow for filling fractions d=0.1 to d=0.5 for a
FHP gas with particle-hole symmetric collisions. Parabolic fit shown for half-filling result.

is whether this method will work well for a multiphase fluid near its critical

point.

Let us consider flow in a channel of half-widthW and length L. For Poiseuille

flow under steady-state conditions with uniform forcing only along the length

of the channel, the Navier-Stokes equation (2.196) reduces to a simple form

η
d2v

dz2 = F (3.28)

where by denoting the total amount of forcing in each half of the channel as pF ,

then it follows

F =
pF
τWL

. (3.29)
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The solution of (3.28) is a parabolic velocity profile

v(z) =
pF

τWLη

(
Wz − z2) , (3.30)

where 0 ≤ z ≤ W ranges over half the channel–the profile in the other half

of the channel is a symmetric image. The maximum velocity occurs at W
2 , so

(3.30) reduces to

vmax|z= W
2

=
pFW
4τLη

. (3.31)

Letting gmax = ρumax denote the maximum momentum density in the Poiseuille

profile, and since the kinematic viscosity ν = η
ρ , the result is

ν =
pFW

4τLgmax
. (3.32)

When simulating the square wave forcing in the channel, one measures the

maximum momentum occuring at the peak of the profile, pmax, by averaging

along the entire length of the channel to improve the statistics. The momentum

density, gmax, is then directly computable by

gmax =
pmax

Ahex
, (3.33)

where the unit area of a lattice cell is Ahex =
√

3
2 `

2. In terms of pmax the

kinematic viscosity becomes

ν =
1
4
pF
pmax

√
3W
2L

`2

τ
. (3.34)

It is useful to express the kinematic viscosity in term of the number of lattice

sites. Let Li and Lj denote the number of lattice sites along the width and

length of the system, respectively. Then W = Li
2 and the length is reduced
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to L =
√

3Lj
2 because of a triangular lattice (see Figure 3.1). Then our final

expression for the kinematic viscosity becomes

ν =
1
8
pF
pmax

Li

Lj

`2

τ
. (3.35)

The dimensions of (3.35) are explicitly written in terms of the spacetime lattice-

constants: `2

τ .

Figure 3.4: Viscosity profiles obtained by Poiseuille flow measurements. Theoretical curves
plotted for FHP 2 and 3-body collisions, particle-hole symmetric collisions, and collisions with
spectator particles. Simulation data from CAM-8 and CD4360 compared with particle-hole
symmetric case.

Measurements were performed on the CAM-8 for a hexagonal lattice gas

with particle-hole symmetric rules. Poiseuille momentum profiles for this system

are obtained by forcing along the length of the channel (see Figure 3.3). The

profile for the system at several densities from 10 percent to 50 percent filling

are plotted. The profile is parabolic. The peak momentum value decreases
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with decreasing density and the mean free path increases. This in turn causes

momentum diffusion to increase. The simulation data are plotted in Figure 3.4

over the theoretical curve of the shear viscosity (2.207) where λ is calculated

with the method given in §2.4.2 applied to an FHP lattice gas with particle-

hole symmetric collisions. For low densities, a systematic error is observed in

the comparison of the simulation data to the theoretical value. This is caused by

the finite size of the lattice. Otherwise the agreement of simulation and theory

is excellent as demonstrated in Figure 3.4.

It is worth noting that when performing this type of measurement on a

parallel SIMD computer one cannot know in advance the exact number of forcing

sites causing a change in the lattice gas momentum. This is because a bit plane

must be used to store a mask for forcing. Any lattice site under a mask point

may or may not be able to be forced. We may write the forcing operator as

follows

F̂(~x) =
δpαβ

τ
â†

αâβ (3.36)

which acts on site x and rotates a particle from momentum state β to α and

where δpαβ/mc = 1
2 ,

√
3

2 , 1,
√

3, depending on the value of α and β. The direction

of the forcing is êβ − êα. If there were not a particle present in state β or there

already was a particle present in state α, F̂(~x) will have no effect on the system.

Method 2: Decay of Sinusoidal Profile

Given a sinusoidal perturbation of wavelength λ of a fluid one can straightfor-

wardly measure the time for relaxation to an equilbrium state where the fluid is

at rest. The relevant part of the Navier-Stokes equation is the time dependent
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term and the momentum diffusion term

(∂t − ν∂2
x)px = 0. (3.37)

This has the solution

px = po sin kxe−k2νt. (3.38)

Therefore, the decay rate, k2ν, can be measured to determine ν since k = 2π
λ

is known. This method is easier to implement on the CAM-8 than the square-

wave forcing method, since no forcing bits or rules are required and it is easy to

generate an initial random fluid pattern with a sinusoidal perturbation. Very

good agreement is found between the mean-field theoretical prediction of the

kinematic shear viscosity and the numerical data shown in Figure 3.5 taken on

the CAM-8 for the FHP lattice gas.

In practice, one would like to include all allowable collisions since this re-

duces the shear viscosity. Therefore, one may also include 4-body collisions, as

illustrated in Figure 3.7. A plot of the lattice gas shear viscosity is given in

Figure 3.8 where the decrease in the shear viscosity is observed according to the

mean-field prediction. The highest curve of Figure 3.4 is the theoretical value

obtained using (2.207) for the FHP-model with 2 and 3-body collisions. The

middle curve, which is slightly lower, is the value obtained with the addition

of 4-body collisions. The fact that it is symmetric about one-half filling is due

to particle-hole symmetry in the collision rules. The lowest viscosity curve is

obtained by using all possible collisions, including 2-body collisions with a spec-

tator particle present. In (3.3.1) I discuss the numerical measurements made for
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the simple hexagonal lattice gas and its comparison to the theoretical results.

3.3.2 Superposition of Sound Pulses

To illustrate the macroscopic behavior of the triangular lattice gas it is sufficient

to perform a simple experiment. Consider a system with toroidal boundary

conditions that is initially randomly populated with particles at some particular

filling fraction. The total initial momentum in the system is zero. Then extract

all the particles in two adjacent small square regions near the middle of the

system. That is, initially there are two small evacuated regions near the center

of the system. Think of the initial conditions as a pond at rest into which

are simultaneously tossed two square stones which, as they fall into the fluid

and drop past the surface, remove two square regions of the fluid. Figure (3.9)

depicts the resulting pressure waves that are produced. After 96 time steps the

circular shape of a sound wave is clearly apparent. After 256 timesteps the two

sound pulses produced interfere with one another and the superposition of sound

modes is demonstrated. The simple example of the stones in a pond experiment

was first done for the HPP-model on a square lattice [65]. The simulation of the

interference patterns of sound wave is straightfoward to model with the lattice

gas methodology, even if complex boundary conditions and density gradients

are imposed.

3.3.3 Kelvin-Helmholtz Instability on the CAM-8

Another well known fluid instability is the Kelvin-Helmholtz shear instability.

Figure 3.10 shows a simulation of a shear instability on a hexagonal lattice 4096×
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2048 in size with toroidal boundary conditions. The initial conditions for the

simulation are very uniform. A gas density is chosen, in this case approximately

1
7 filling, and two horizontal regions are set with uniform, but opposing flow

directions. That is, the majority of the fluid, the background region, is set with

a uniform flow velocity of approximately 0.4 cs (Mach 0.4) flowing to the right.

A narrow stripe 256 sites wide is set in the center of the space flowing to the left

at -0.4 cs. No sinusoidal perturbation is given to the counter-flow narrow stripe

region as in previous lattice gas simulations[79]. No external forcing is applied

during the simulation run. The only perturbation is caused by minor fluctations

produced by the random number generator when producing a uniform fluid

density. After approximately 10,000 time steps, the narrow horizontal center

stripe forms a sinusoidal pattern. The sinusoid grows and eventually breaks into

several counter-rotating vortices, and the two flow regions begin to substantially

mix. Figure 3.10 shows the state of the fluid initially and then at 10,000 and

30,000 time steps. By t = 30, 000, the formation of a wave is apparent, typical of

the Kelvin-Helmholtz instability. Eventually, after 400,000 time steps, the fluid

attains a uniform flow to the right after the system has equilibrated, exactly

conserving the momentum in the initial configuration.

3.3.4 Von Karman Streets on the CAM-8

Figure 3.11 shows successive snapshots of a CAM-8 simulation of vortex shed-

ding from a flat plate from the initial state to time step 20,000 on a hexagonal

lattice 4096 × 2048 in size. The boundary conditions are effectively toroidal.

A momentum map, overlayed on a vorticity map, is computed with a Galilean
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shift of 25 percent of the mean flow. Clockwise vorticity is shaded red and

counter-clockwise vorticity is shaded blue. A flat plate obstacle is placed in a

channel of fluid with a flow directed towards the right of the figure. The fluid

flow is forced to the right at each time step in a “forcing strip” at the right end

of the channel. The effect of sound waves and other disturbances that propagate

around the torus do not significantly alter the flow behavior.

The flow is started from a random distribution of particles at the appropri-

ate density with a net velocity close to that of the steady state flow. Since this

is not a true equilibrium starting condition, some transient behavior appears

in the form of a sound pulse that propagates down the channel. This pulse is

absorbed by the forcing strip. After 2000 time steps the system is equilibrated

with no transient phenomena visible. This equilibration time is very short com-

pared with the time necessary for vortex development. The toroidal boundary

conditions are sufficient to produce vortex shedding phenomena, however the

simulation’s elapsed time cannot exceed 20,000 time steps. To run the simula-

tion to long times, a cylindrical boundary condition appears to work extremely

well [105].
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Figure 3.5: Kinematic viscosity versus density obtained by measuring the rate of exponential
damping of a sinusoidal velocity perturbation. The theoretical mean-field prediction and
numerical data are plotted for an FHP lattice gas with 2 and 3-body collisions on a two
dimensional triangular lattice. Simulation runs were done on the CAM-8 on a 512 × 512
periodic space.
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0 0 1 0 1 1 -> 1 0 0 1 1 0 
  
0 0 1 1 0 1 -> 0 1 0 1 1 0 
  
0 1 0 0 1 1 -> 1 0 0 1 0 1 
  
0 1 0 1 1 0 -> 0 0 1 1 0 1 
  
0 1 1 0 0 1 -> 1 1 0 1 0 0 
  
0 1 1 0 1 0 -> 1 0 1 1 0 0 
  
1 0 0 1 0 1 -> 0 1 0 0 1 1 
  
1 0 0 1 1 0 -> 0 0 1 0 1 1 
  
1 0 1 0 0 1 -> 1 1 0 0 1 0 
 
1 0 1 1 0 0 -> 0 1 1 0 1 0 
  
1 1 0 0 1 0 -> 1 0 1 0 0 1 
  
1 1 0 1 0 0 -> 0 1 1 0 0 1  
 

Figure 3.6: Enumeration of 2-body collisions with a spectator particle.

0 1 1 0 1 1 -> 1 1 0 1 1 0 
 
1 0 1 1 0 1 -> 0 1 1 0 1 1 
  
1 1 0 1 1 0 -> 1 0 1 1 0 1   
 

0 1 1 0 1 1 -> 1 0 1 1 0 1 
 
1 0 1 1 0 1 -> 1 1 0 1 1 0 
  
1 1 0 1 1 0 -> 0 1 1 0 1 1   
 

Even Chirality Odd Chirality 

Figure 3.7: Enumeration of 4-body collisions, even and odd chirality, which are particle-hole
symmetric with the 2-body collsions.
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Mean field theory versus CAM-8 simulation

2,3-body
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2,2+1,3,4-body
(-1/2 + 1/(3d(1 - d)^3))/4

(-1/2 + (-1/2 + 1/(2(1.5d(1 - d)^3 + 1.5(1 - d)d^3)))/4
(-1/2 + 1/(2(1.5d(1 - d)^3 + 6d^2(1 - d)^2 + 1.5(1 - d)d^3)))/4

Figure 3.8: Viscosity profiles obtained by measuring the rate of expontential damping of a
sinusoidal velocity perturbation. Theoretical curves and numerical data plotted for a hexago-
nal lattice gas with 2 and 3-body collisions, particle-hole symmetric collisions, and collisions
with spectator particles. Simulation data are from the CAM-8.
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(a) 

(b) 

(c) 

Figure 3.9: Illustration of sound mode and superposition in an FHP lattice gas. (a) Initial
pattern with two square regions removed (i.e. two stones in a pond), (b) circular sound wave
forms after 96 time steps, and (c) superposition observed after 256 timesteps. Sound speed is
c/

√
D, where c is the speed of a single lattice gas particle and D = 2 in this case. Simulation

carried out on a 1024 × 512-lattice.
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Figure 3.10: Two-speed CAM-8 experiment: Vorticity and momentum map of two-
dimensional shear instability. Lattice size of 4096 × 2048 with toroidal boundary conditions.
Spacetime averaging over 128x128 blocks for 50 time steps. FHP collisions with spectators
and a rest particle. Data presented at 0, 10000, and 30000 time steps. Re ∼ 1000.
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Figure 3.11: Two-speed CAM-8 simulation: momentum and vorticity plot of Von Karman
Streets for a lattice size of 4096 × 2048. Time Average: 50. Spatial Average: 64x64 (momen-
tum), 16x16 (vorticity). Mass Density Fraction=1/7. Data presented at indicated time steps.
At rest at t = 0, v = 0, and accelerating to v = 0.3c at t = 20, 000. Diameter of cylindrical
obstacle: d = 256. Critical Reynolds number for vortex shedding, Re = 42 occurs at approx-
imately t = 10, 000. Maximum Reynolds number achieved in simulation is: Re ∼ 250. Red
indicates clockwise vorticity and blue counter clockwise vorticity.
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Chapter 4

Multispeed Lattice-Gas

A simple generalization of the FHP single-speed collision rules leads to emergent

behavior similar to that which occurs in hydrothermal fluids in nature. The

simple generalization is to allow particles to have several speeds that are integral

multiples of the fundamental unit speed, v = nc = n`/τ . Such a lattice gas

system is referred to as a multispeed lattice gas. Multispeed lattice gases for

the recovery of the classical thermohydrodynamic fluid equations have been

investigated by several researchers, Chen et al. [26], Teixeira [85], and Ernst

and Das [35].

Following Chen [26], I have implemented a two-speed model with a rest par-

ticle. This models a thermohydrodynamic system. This kind of lattice gas was

first introduced in 1987 by Burges and Zaleski [19] in the context of multispecies

particles. Their goal was the study of lattice gases that model buoyant mixtures.

In essence, their model was two coupled single-speed hexagonal gases with a rest

particle. They succeeded in achieving a convective instability in their lattice gas

driven by a concentration gradient in the species populations. However, they
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Table 4.1: Multispeed Lattice-Gas Glossary of Variables
Variables Names

Lattice Constants
` length unit
τ time unit
m mass unit
c velocity unit ( `

τ )
D spatial dimension

Gas Constants
cs sound speed
η shear viscosity
ν kinematic viscosity (η

ρ )
Multispeed Model

σ particle speed index
Bσ number of momentum states/speed
cσ particle speeds
~eσ

a lattice vectors/speed
nσ number density/speed
dσ reduced density/speed
fσ

a distribution function/speed
qi heat flux
Pij pressure tensor
E total energy
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did not succeed in developing an equation of motion for this system. It was not

until 1991 that the equation of motion for this system was derived. This was

done by the lattice gas group at Los Alamos [26]. The important step made

by Shiyi Chen and coworkers was to interpret the coupled system as a single

species gas but having two speeds.

Grosfils, Boon and Lallemand have introduced a three-speed thermohydro-

dynamic gas with speeds 1,
√

3, 2 and a rest particle [43]. With this 19-bit

model, efficient collisional mixing can occur with all particles having the same

unit mass. Since the particles may now carry different units of energy, in addi-

tion to the equation of continuity and Euler’s equation, in this system we have

an energy transport equation.

4.1 Summary of Physical Assumptions

• Discrete Spacetime (equivalently: cellular phase space)

• Isotropic spatial lattice

∑
a

eσ
ai = 0 (4.1)

∑
a

eσ
aie

σ
aj =

Bσ

D

c2σ
c2
δij (4.2)

∑
a

eσ
aie

σ
aje

σ
ak = 0 (4.3)

∑
a

eσ
aie

σ
aje

σ
ake

σ
al =

Bσ

D(D + 2)
c4σ
c4

(δijδkl + δikδjl + δilδjk) (4.4)

• Mass, momentum, and energy conservation

ρ = m
∑
a,σ

fσ
a (4.5)
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ρvi = mc
∑
a,σ

eσ
aif

σ
a (4.6)

nE =
1
2
mc2

∑
a,σ

(eσ
a)2fσ

a (4.7)

• Particles are Fermi-Dirac distributed

fσ
a =

1
1 + exp (αρ + αveσ

aivi + βEσ)
(4.8)

• Equilibrim Dynamical Equation

∂tf
σ
a + ceσ

ai∂if
σ
a = 0. (4.9)

Note that all these physical assumptions are not independent; however it is

convenient to use these as our starting point.

4.2 Microdynamics: An Exactly Computable Ther-
modynamical System

The evolution of the multispeed lattice gas is written in terms of nσ
a as a two-

part process: a collision part and a streaming part. The collision part permutes

the particles locally at each site.

nσ
a

′(~x, t) = nσ
a(~x, t) + Ωσ

a [~n(~x, t)], (4.10)

where Ωσ
a represents the collision operator and in general depends on all the

particle momenta and energy states, denoted by ~n, at the site. In the streaming

part of the evolution the particle at position ~x “hops” to its nearest neighbor

(or next nearest neighbor and so forth) at ~x+`eσ
a , and then time is incremented

by τ

na(~x+ `~eσ
a , t+ τ) = nσ

a
′(~x, t). (4.11)
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Note that the set {eσ
a} are not in general unit vectors. And for each speed σ,

the set of vectors {eσ
a} for a = 1, . . . , Bσ specifies an isotropic lattice. Therefore,

the usual lattice tensor identities hold for each lattice gas speed

E(2n+1)
σ = 0 (4.12)

E(2n)
σ =

Bσ

D(D + 2) · · · (D + 2n− 2)
c2n
σ

c2n
∆2n. (4.13)

where cσ = σc is the speed of a particle in the σth-energy level. Equations

(4.12) and (4.13) impose a more stringent restriction on the choice of lattice

geometry than is absolutely necessary. However, this restriction simplifies the

calculations.

Combining the collision equation (4.10) and the streaming equation (4.11)

gives the multispeed lattice gas microdynamical transport equation of motion

nσ
a(~x+ `~eσ

a , t+ τ) = nσ
a(~x, t) + Ωσ

a [~n(~x, t)]. (4.14)

For each speed σ = 0, 1, . . . ,M , (7.1) is identical in form to the classical lattice

gas described by (2.23). The essential difference in the present case is that the

set of M lattice gas transport equations (7.1) are coupled by energy mixing

collisions implicitly contained in Ωσ
a . Without such energy mixing collisions,

the lattice gas system described by (7.1) could not give rise to an equipartition

theorem for the multiple energy level occupations.
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4.3 Statistical Mechanics of a Multispeed Lat-
tice Gas System

The multispeed lattice gas Hamiltonian is

H =
V∑

x=1

B∑
a=1

M∑
σ=1

Eσ
an

σ
a(x), (4.15)

where there are a total of V spatial sites in the lattice, B momenta directions,

and M momenta magnitudes. Note that in this form of the Hamiltonian, the

occupation variable is Boolean: nσ
a ∈ {0, 1}. The “kinetic” energy of a particle

moving in direction a in the σth-energy level is

Eσ
a =

1
2
mc2σ =

1
2
mc(~eσ

a)2. (4.16)

The total mass density is

ρtotal =
∑
xaσ

mnσ
a(x) (4.17)

and the total momentum density is

ρtotalVi =
∑
xaσ

mceσ
ain

σ
a(x). (4.18)

The grand partition function for a multispeed lattice gas system with N particles

is defined as

Ξ =
∑
{n}

exp [−βH + µρtotal + ρtotalViαi] . (4.19)

The sum is over all configurations of particle occupations in the grand canonical

ensemble. This configurational set is denoted by {n}, and µ is the chemical

potential. Inserting (4.15), (4.17), and (4.18) into (4.19) gives

Ξ =
∑
{n}

exp

[
−β
∑
xaσ

Eσ
an

σ
a(x) + µ

∑
xaσ

mnσ
a(x) + αi

∑
xaσ

mceσ
ain

σ
a(x)

]
(4.20)
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=
∑
{n}

∏
xaσ

exp [−βEσ
a + µm+ αimce

σ
ai]

nσ
a(x) (4.21)

Define the fugacity as

zσ
a = exp [−βEσ

a + µm+ αimce
σ
ai] . (4.22)

Note that zσ
a is not dependent on ~x. The grand partition function simplifies to

Ξ =
∑
{n}

∏
xaσ

(zσ
a )nσ

a(x)
. (4.23)

Now it is possible to interchange the sum over configurations {n} with the

product over the coordinates (x, a, σ); that is,
∑

{n}
∏

xaσ → ∏
xaσ

∑
n. What

are the limits of the sum over n after this interchange? The answer is that the

sum must now count from n = 0, . . . , 2Nmax − 1, where Nmax is the maximum

number of particles that can occupy a channel. In the present construction,

the channel is defined as (x, a, σ). There can be at most a single particle per

channel according to the Hamiltonian (4.15), so Nmax = 1. Furthermore, upon

interchanging the sum with the product, the exponent of the fugacity becomes

just a number independent of x, a, and σ. That is, we are summing over all

possible powers of the fugacity. Therefore, (4.23) can be rewritten as

Ξ =
∏
xaσ

21−1∑
n=0

(zσ
a )n (4.24)

=
∏
xaσ

(1 + zσ
a ) (4.25)

=
∏
aσ

(1 + zσ
a )V

. (4.26)

The last line follows from the fact that zσ
a is independent of ~x. The grand

potential, denoted Ω, is defined as the logarithm of the grand partition function,
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so that

Ω = log Ξ (4.27)

= V
∑
aσ

log (1 + zσ
a ) . (4.28)

The particle number density per site, denoted f , is defined as

f(z) ≡ z

V

∂

∂z
log Ξ(z), (4.29)

so for the multispeed lattice gas system, the number density is

f =
∑
aσ

zσ
a

1 + zσ
a

. (4.30)

Since f =
∑

aσ f
σ
a , the particle distribution per direction a and per energy level

σ is the Fermi-Dirac function

fσ
a =

1
(zσ

a )−1 + 1
. (4.31)

Therefore, each bit of the multispeed lattice gas obeys the Pauli exclusion prin-

ciple as expected.

4.4 Obtaining the Macroscopic Equations of Mo-
tion from the Fermi-Dirac Distribution Func-
tion

In this section I generalize the calculation done in §D.1 where the single-speed

Fermi-Dirac distribution function is expanded in powers of the bulk flow velocity.

The distribution must be written as a function of the sum of scalar collision

invariants that now includes an energy term, αρ + αveσ
aivi + βEσ, implying the

following form

fσ
a =

1
1 + exp (αρ + αveσ

aivi + βEσ)
. (4.32)
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Expand the αρ, αv, and β as follows

αρ = αρ
0 +

1
2
αρ

2v
2 + O(v4) (4.33)

αv = αv
1 +

1
2
αv

3v
2 + O(v4) (4.34)

β = β0 +
1
2
β2v

2 + O(v4). (4.35)
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Using the identities (2.19) and (2.20), an expansion to fourth order of (4.32)

about zero velocity is the following

fσ
a = dσ (4.36)

−dσ(1 − dσ)αv
1e

σ
ai

vi

c

−1
2
dσ(1 − dσ)(αρ

2 + β2
Eσ

KBT
)
v2

c2

+
1
2
dσ(1 − dσ)(1 − 2dσ)(αv

1)
2eσ

aie
σ
aj

vivj

c2

−1
2
dσ(1 − dσ)αv

3e
σ
ai

viv
2

c3

+
1
2
dσ(1 − dσ)(1 − 2dσ)αv

1(α
ρ
2 + β2

Eσ

KBT
)eσ

ai

viv
2

c3

−1
6
dσ(1 − dσ)(1 − 6dσ + 6dσ

2)(αv
1)

3eσ
aie

σ
aje

σ
ak

vivjvk

c3

+O(v4)

where dσ = fσ
a |v=0 and Eσ = 1

2

∑
a(eσ

a)2dσ. The macroscopic dynamics depend

on the following dynamical variables.

Particle number density:

m
∑
a,σ

fσ
a = ρ, (4.37)

Momentum density:

mc
∑
a,σ

eσ
aif

σ
a = ρvi, (4.38)

Momentum density flux tensor:

mc2
∑
a,σ

eσ
aie

σ
ajf

σ
a = Πij . (4.39)

Total energy density, half the trace of the momentum flux tensor:

nE =
1
2
Π̂ii. (4.40)

118



Pressure tensor, P̂ :

P̂ij = m
∑
a,σ

fσ
a (ceσ

ai − vi)
(
ceσ

aj − vj

)
. (4.41)

Heat flux, q:

qi = m
∑
a,σ

fσ
a

(
ceσ

aj − vj

)2 (ceσ
ai − vi) . (4.42)

In equilibrium in the mesoscopic limit, the dynamical transport equation is

∂tf
σ
a + ceσ

ai∂if
σ
a = 0. (4.43)

Equation (4.43) implies three conservation equations. To obtain these equations,

the identities for isotropic lattice vectors (2.20) and (2.19) are necessary. Using

(4.37) and (4.38) in (4.43) gives continuity (mass conservation):

∂tρ+ ∂i(ρvi) = 0. (4.44)

Using (4.38) and (4.39) in (4.43) gives the Navier-Stokes equation (momentum

conservation):

∂t(ρvi) + ∂j(ρgvivj) = −∂ip+ η∂2vi. (4.45)

where

p = (γ − 1)(nE − 1
2
ρgv2) (4.46)

and γ = Cp

Cv
or γ−1 = 2

D . To derive the heat equation, take the second moment

of (4.43)

∂t(nE) + c∂j

[∑
aσ

mc2σe
σ
ajf

σ
a

]
= 0. (4.47)

The term in square brackets can be determined by expanding the heat flux

(4.42)

qj = c
∑
aσ

mc2σe
σ
ajf

σ
a − 2viΠij − 2ρv2

i vj − vjnE. (4.48)
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Now the pressure tensor (4.41) reduces to

Pij = Πij − ρvivj (4.49)

so we have

c
∑
aσ

mc2σe
σ
ajf

σ
a = qj + 2viPij + vjnE. (4.50)

Substituting this into (4.47) gives the heat equation (energy conservation):

∂t(nE) + ∂i(nEvi) +
1
2
∂iqi + ∂j(viPij) = 0. (4.51)

Although the lattice gas may in principle comprise an indefinite number of

speeds, from (4.46) we see that the pressure depends upon the square of the bulk

velocity; that is, it is the total internal energy of the lattice gas minus the bulk

kinetic energy. In a single speed lattice gas, this kind of velocity dependence is

anomalous and is a well known deficiency of the lattice gas (see the discussion

in subsection §2.3.1). However, for a multispeed lattice gas the existence of this

term takes on a physical interpretation. For a classical ideal gas, the pressure

is proportional to both the sound speed squared and the temperature

p = ρc2s = nkBT. (4.52)

Since ρ = mn, equating (4.46) with the ideal gas law (4.52) gives the total

internal energy in terms of the bulk kinetic energy 1
2mv

2 and the local particle

thermal energy kBT

E =
g

2
mv2 +

kBT

γ − 1
. (4.53)

The Navier-Stokes equation (4.45), the pressure (4.46), and the total energy
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(4.53) all explicitly have a factor g in them.1 If g = 1, then a multispeed lattice

gas would exactly solve the ideal fluid equations where the physical interpre-

tation of the total internal energy would then be that it partitions into a bulk

motion term, or kinetic energy, and a fluctuating motion term, or random heat

energy associated with a certain gas temperature. Therefore, the multispeed

lattice gas calculation, in the Boltzmann limit, would exactly agrees with classi-

cal kinetic gas theory (see the expression for the partial pressure of an electron

gas given by Li and Wu [58]). One would expect g to approach one only as the

number of speeds in the lattice gas model becomes large.

4.5 Determination of Expansion Coefficients

For convenience we will make the following definitions

a0 ≡
∑

σ

Bσ
cσ

2

c2
dσ (4.55)

a1 ≡
∑

σ

Bσdσ(1 − dσ) (4.56)

a2 ≡
∑

σ

Bσdσ(1 − dσ)
Eσ

kBT
(4.57)

a3 ≡
∑

σ

Bσ
cσ

2

c2
dσ(1 − dσ)(1 − 2dσ) (4.58)

b1 ≡
∑

σ

Bσ
cσ

2

c2
dσ(1 − dσ) (4.59)

b2 ≡
∑

σ

Bσ
cσ

2

c2
dσ(1 − dσ)

Eσ

kBT
(4.60)

1In the Boltzmann limit, the factor g depends on the particle speeds, cσ , and on the density
distribution per speed, dσ , by the following complicated expression

g =
D

D + 2

P
σ Bσdσ

P
σ Bσ( cσ

c
)4dσ(1 − dσ)(1 − 2dσ)

P
σ Bσ( cσ

c
)2dσ(1 − dσ) 2 . (4.54)

This expression is derived in the following section, see (4.80).
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b3 ≡
∑

σ

Bσ
cσ

4

c4
dσ(1 − dσ)(1 − 2dσ) (4.61)

a4 ≡
∑

σ

Bσ
cσ

2

c2
dσ(1 − dσ)(1 − 2dσ)

Eσ

kBT
(4.62)

a5 ≡
∑

σ

Bσ
cσ

4

c4
dσ(1 − dσ)(1 − 6dσ + 6dσ

2) (4.63)

Defining

B ≡
∑

σ

Bσ (4.64)

the reduced density has the usual form d =
P

σ Bσdσ
B = n

B and the zeroth

moment of (4.36) is

1
B

∑
aσ

fσ
a =

∑
σ

Bσ

[
dσ − 1

2
dσ(1 − dσ)(αρ

2 + β2
εσ

kBT
)
v2

c2
+

cσ
2

2Dc2
dσ(1 − dσ)(1 − 2dσ)(αv

1)
2 v

2

c2

]
= d.

(4.65)

Using the definitions, (4.65) reduces to

a1α
ρ
2 + a2β2 − a3

D
(αv

1)
2 = 0. (4.66)

The first moment of (4.36) is

1
B

∑
aσ

eσ
aif

σ
a =

∑
σ

Bσ[ − cσ
2

Dc2
dσ(1 − dσ)αv

1
vi

c
(4.67)

− cσ
2

2Dc2
dσ(1 − dσ)αv

3
viv

2

c3

+
cσ

2

2Dc2
dσ(1 − dσ)(1 − 2dσ)αv

1(α
ρ
2 + β2

εσ

kBT
)
viv

2

c3

− cσ
4

2D(D + 2)c4
dσ(1 − dσ)(1 − 6dσ + 6dσ

2)(αv
1)

3 viv
2

c3
]

= d
vi

c
.

Using the definitions, the first-order terms in the velocity of (4.67) reduce to

αv
1 = −Dn

b1
(4.68)
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and the third-order terms in the velocity reduce to

b1α
v
3 − a3

D
αv

1α
ρ
2 − a4

D
αv

1β2 +
a5

D(D + 2)
(αv

1)
3 = 0. (4.69)

The second moment of (4.36) is

1
B

∑
aσ

(eσ
ai)

2fσ
a =

∑
σ

Bσ[
cσ

2

c2
dσ (4.70)

−cσ
2

2c2
dσ(1 − dσ)(αρ

2 + β2
εσ

kBT
)
v2

c2

+
cσ

4

2Dc4
dσ(1 − dσ)(1 − 2dσ)(αv

1)
2 v

2

c2
]

=
dE

2mc2
.

Using the definitions, the terms independent of the velocity of (4.70) reduce to

nE =
1
2

∑
σ

mcσ
2Bσdσ (4.71)

and the second-order terms in the velocity reduce to

b1α
ρ
2 + b2β2 − b3

D
(αv

1)
2 = 0. (4.72)

The forms of (4.66) and (4.72) are the same, so using (4.68) we may write them

in matrix form as

(
a1 a2
b1 b2

)(
αρ

2
β2

)
=
Dn2

b21

(
a3
b3

)
(4.73)

The solution for αρ
2 and β2 is then simply

αρ
2 =

Dn2

b21

a3b2 − a2b3
a1b2 − a2b1

(4.74)

β2 =
Dn2

b21

a1b3 − a3b1
a1b2 − a2b1

(4.75)

Using αv
1 = −Dn

b1
, (4.72) becomes

b1α
ρ
2 + b2β2 = Dd2 b3

b21
(4.76)
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which will be of use when we derive an expression for the momentum flux density

tensor.

4.6 Momentum Flux Density Tensor

The definition of the momentum flux density tensor (4.39) is the following

Πij = mc2
∑
aσ

eσ
aie

σ
ajf

σ
a .

Substituting into (4.39) the expansion (4.36) for fσ
a gives

Πij = mc2
∑
aσ

eσ
aie

σ
aj

[
dσ − 1

2
dσ(1 − dσ)(αρ

2 + β2
εσ

kBT
)
v2

c2

]
(4.77)

+mc2
∑
aσ

eσ
aie

σ
aje

σ
ake

σ
al

1
2
dσ(1 − dσ)(1 − 2dσ)(αv

1)
2 vkvl

c2
.

Using the identities for the products of lattice vectors, we have

Πij =
1
D

∑
σ

mc2σBσdσδij − m

2D
(b1α

ρ
2 + b2β2)v2δij (4.78)

+
m

2
D

D + 2
d2b3
b21

v2δij +m
D

D + 2
d2b3
b21

vivj .

Using (4.71) and the identity (4.76), this reduces to

Πij = ρ
2E
Dm

δij − ρgv2 δij
D

+ ρgvivj (4.79)

where we have determined the factor g to be

g =
D

D + 2
nb3
b21
. (4.80)

Now we know that the ideal part of the momentum flux density tensor (2.192)

is

Πij = pδij + ρgvivj
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so equating this with (4.79) gives us an expression for the fluid’s pressure

p =
2
D

(nE − g

2
ρv2) (4.81)

For g = 1, this is exactly the correct form of the pressure for a thermohydrody-

namic fluid.

4.7 Thermohydrodynamic Sound Speed Measure-
ments

In this section we consider the linear response of a multispeed lattice gas to

a macroscopic perturbation of the density field. The macroscopic equations of

motion are (4.44), respectively

∂tρ+ ∂i(ρvi) = 0

∂t(ρvi) + ∂j(gρvivj) = −c2s∂i

(
ρE

1
2mc

2
− gρ

v2

c2

)
+ ρν∂2vi

where n = ρ/m has been used. It is sufficient to treat a macroscopic density

perturbation on a resting equilibrium state where ρ is uniform and constant,

v = 0, and the energy E is constant. Then an ε-expansion of the dynamical

variables is

vi = εui (4.82)

ρ = ρ◦ + ε%, (4.83)

where the small fluctuating parts of the velocity and density are denoted u and

%, respectively. Consequently, the linear response equations are

∂t% = −ρ◦∂iui (4.84)

125



ρ◦∂tui = − E
1
2mc

2
c2s∂i%+ ρ◦ν◦∂2ui (4.85)

Then, applying ∂t to the continuity equation and ∂i to the Navier-Stokes equa-

tion allows us to eliminate ui and to obtain the following second-order equation

in %

∂2
t % =

E
1
2mc

2
c2s∂

2%+ ν◦∂2∂t%. (4.86)

In an inviscid fluid (ν = 0), % would satisfy the wave equation

% = ρ◦ exp
(
−iωt+ i~k · ~x

)
. (4.87)

Given a non-zero perturbation, % can be Fourier expanded

% =
∫
dωdk3 ρ̃ exp

(
−iωt+ i~k · ~x

)
(4.88)

and we can replace % with %̃ by taking ∂t → −iω and ∂i → iki. Equation (4.86)

becomes

−ω2%̃ = −k2C2
s %̃+ iων◦k2%̃. (4.89)

where the thermal sound speed is defined as

Cs ≡ cs

√
E

1
2mc

2
=

√
2E
mD

. (4.90)

Dividing out %̃ gives a quadratic equation for ω

(
ω

Cs

)2

+ i
ν◦k2

Cs

(
ω

Cs

)
− k2 = 0. (4.91)

The dispersion relation for ω(k) is then

ω = ±Csk

√
1 +

ν2◦k2

4C2
s

− i
ν◦
2
k2. (4.92)
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In the long wavelength limit, (4.92) reduces to linear sound speed dispersion

ω = ±Csk. (4.93)

The imaginary part of the dispersion relation (4.92), will cause damping in the

sound wave.

A simple numerical experiment to test the lattice gas thermohydrodynamic

equations (4.46,(4.52), and (4.53) of §4.4 is to measure the sound speed as a

function of temperature.2 To numerically measure the sound speed of a fluid a

rest, it is convenient to set up a sinusoidal density perturbation of a given wave-

length. Such a perturbation will give rise to a standing wave whose amplitude

fluctuation is easily measured and provides a direct means for measuring the

sound speed for a gas with a given density and energy.

A preliminary test has been conducted for a 13-bit 3-speed lattice gas. The

lattice size is chosen to be 1024x512 and the perturbation is chosen to have a

wavelength of λ = 512. The density variation occurs along the narrow channel
2Since the lattice gas has a factor g due to the discreteness of space, the Navier-Stokes

equation must be rescaled to have the correct form. This may be done by rescaling time and
viscosity[40]

t → t

g
(4.94)

ν → gν (4.95)

Then the Navier-Stokes equation (4.45) for constant density becomes

gρ∂tvi + ρg∂j(vivj) = − 2
D

∂i nE − 1
2

ρgv2 + gη∂2vi. (4.96)

allowing us to identify a scaled pressure

p → 2
gD

nE − 1
2

ρgv2 . (4.97)

Since one would like to write p = mn (C′
s)

2, in a reference frame where the fluid is at rest,
then

C′
s →

s
2E

gmD
=

1√
g

Cs. (4.98)

This is a rescaled sound speed in the Galilean invariant frame of reference.
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Figure 4.1: Hydrothermal CAM-8 Sound Wave Experiment: Standing wave density profile
for a 13-bit 3-speed lattice gas, d = 0.5, 5 percent amplitude perturbation, λ = 512.

direction so that one full period of the standing wave exists on a toroidal space.

For each of the 512 channel positions an average density can be obtained by

summing over 1024 data points. Although the density can be integrated in this

way, because of the fluctuations in the lattice gas, the resulting average versus

channel position is noisy.

Figure 4.1 shows the integrated standing wave density profile after the wave

has oscillated many times. At small time intervals, the first Fourier harmonic

is measured by multiplying the density profile by its initial sinusoidal envelope.

The fluctuation of this first component will smoothly oscillate with a frequency

of cs

λ (see Figure 4.2). Several measurements were made for a fluid at density,

d = 0.5, for a range of energies, E = 0.25, 0.26, . . . , 0.36. This is the full

range of energies available at this density. The resulting sound speed data are
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presented in Figure 4.3. Viscous damping becomes higher with increasing energy

in accordance with the predicted dispersion relation (4.92). This implies that

the kinematic viscosity, ν◦, is strongly energy dependent and increases as the

system temperature is raised. This can be qualitatively understood as follows

by considering the 13-bit 3-speed lattice gas. At high energy filling fractions, the

population of the fast moving particles increases, thereby reducing the chance of

energy mixing collisions. Without these energy mixing collisions, particles can

more readily diffuse throughout the fluid, so the mean-free-path, λ, increases.

Furthermore, the sound speed increases with temperature; Cs ∝ √
E. These

two factors both contribute to the increase of the fluid’s kinematic viscosity

since ν◦ ∼ Csλ.

4.8 Rayleigh-Bénard Convection on the CAM-8

A well known fluid instability of a thermohydrodynamic system is Rayleigh-

Bénard convection[69, 29]. Rayleigh-Bénard convection is a popular experiment

because one can observe the onset of order and then the transition to chaos in

the flow patterns [20, 6].

Here the implementation of the two-speed hexgonal lattice gas with a rest

particle, includes gravitational forcing, free-slip and no-slip boundaries that may

be oriented horizontally, vertically, or inclined ±60◦, and heating and cooling

sites to model temperature controlled boundary surfaces. This has been encoded

within the site data space of 16-bits per site for simple implementation on the

CAM-8. The ability to encode such complex dynamics within 16-bits is one of
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the remarkable aspects of the lattice gas formalism in terms of efficient memory

use, affording us the ability to do flash updating from prestored collision tables.

Of the 216 collision table entries, 98 percent are used (that is, are not identity

entries) in this model. Similar lattice gas models have been implemented by

Burges and Zaleski [19], by Chen et al. [26], and by Ernst and Das [34].

To optimize the collision frequency between the fast and slow particles, fol-

lowing Chen [26] their momenta are chosen to be of unit value. That is, the

slow particles have unit mass, m1 = 1 and the fast particles have half the mass,

m2 = 1/2. In this way, p1 = p2 = 1 and their energies are E1 = 1 and E2 = 2.

With this convention we have the usual FHP-type collisions [41] between the

different speed particles while conserving mass, momentum, and energy. These

include head-on 2-body collisions, three-body collisions, collisions with specta-

tors, etc.
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Figure 4.2: Hydrothermal CAM-8 Sound Wave Experiment: Sound wave damping. Oscil-
lations of a standing wave amplitude versus time at d = 0.5 for several energies ranging from
0.25 to 0.36 with a 1024 × 512 lattice size in a simple 13-bit 3-speed model.

131



1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32

so
un

d 
sp

ee
d 

=
 5

12
/T

energy

CAM-8 Data

Figure 4.3: Hydrothermal CAM-8 Sound Wave Experiment: Sound versus energy derived
from standing waves at d = 0.5 for several energies ranging from 0.25 to 0.32 in a simple 13-bit
3-speed lattice gas model.

Cold Plate 

G
r
a
v
it
y
 

Hot Plate 

Figure 4.4: Hydrothermal CAM-8 Experiment: Rayleigh-Bénard convection cells at the
onset of convection where rolls are first observed in a simple 13-bit 3-speed lattice gas model.
Lattice Size: 2048 × 1024. Time Average: 100. Spatial Average: 64 × 64. Mass Density
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Chapter 5

Integer Lattice Gases
(L > 1)

Two discrete models for fluid dynamics are the lattice gas automaton (LGA)

and lattice-Boltzmann equation (LBE). Each has its own advantages and dis-

advantages for modeling complex fluids on parallel computers. I have explored

a new discrete approach, an integer lattice gas, that retains the best features of

both [16]. An integer lattice gas uses L > 1 bits in binary encoded fashion to

represent the particle count in each momentum state of the spatial lattice (in the

special case of L = 1 the method reduces to LGA). Like the LGA, the integer

method: (1) is exactly computed on a discrete spacetime lattice (all the additive

conserved quantities, e.g. mass and momentum, are kept strictly fixed during

the entire coarse of the calculation—there is no numerical round-off error); (2)

microscopically obeys semi-detailed balance; (3) has a mesoscopic limit defined

by ensemble averaging; and (4) acts like a fluid in the continuum macroscopic

limit (the usual Chapman-Enskog expansion is performed) . Like the LBE, the

integer method: (1) recovers the correct fluid equations, with full Galilean in-
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variance; (2) achieves a reduction in viscosity; and (3) achieves a considerable

noise reduction. Numerical experiments were carried out on parallel computers

(CAM-8, CM-5, SP-2) to verify the theoretical analysis of the integer lattice

gas.

LGA has exact conservations, obeys semi-detailed balance, is uncondition-

ally stable, and provides an eligible computer architecture. In LGA, a single bit

is used to represent each particle momentum state in a crystallographic spatial

lattice. Since the dynamics is computed on the “microscopic” level, the sin-

gle particle distribution probabilities at the “mesoscopic” level are defined by

ensemble averaging. Allocating a bit for every particle momentum state lim-

its the LGA fluid dynamics to low Reynolds numbers. Additionally, there are

discretization artifacts, including in particular, a lack of Galilean invariance.

In an effort to repair these problems, in particular to obtain high Reynolds

numbers and to recover Galilean invariance, the LBE approach was born. Here

one uses floating point numbers to directly represent the mesoscopic particle

probability distribution function in the Boltzmann equation and one typically

uses the Bhatnager-Gross-Krook approximation to model the collision operator,

though this is prone to numerical instabilities. So, as a trade-off to avoid com-

puting any microscopic details, LBE gaves up semi-detailed balance and conse-

quently unconditional stability, a problem typical of finite-difference methods.

The integer lattice gas is an alternate route to avoid these problems encoun-

tered in LGA and LBE. Since the particle distribution function is known in

closed form, a theoretical analysis of the integer lattice gas is possible, and in
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fact many results obtained in the L = 1 case follow in the expected fashion for

L > 1, (e.g. calculation of the kinematic viscosity presented below). Just as

the LGA fluid model has been extended to model complex fluids, such as mul-

tiphase and immiscible fluids, the integer lattice gas likewise can be extended

to model complex fluids. So the lessons learned for the L = 1 case will apply

when multiple bits are used to encode the particle occupancies.

5.1 Microdynamics

In the integer lattice gas L bits per site are used in a binary exponential encoding

where the least significant bit represents a single particle of mass, m, the next

significant bit represents two particles, and the most significant bit represents

2L−1 particles, as indicated in Figure 5.1. Now, two indices are used on all

variables–the first index is the directional index for the particle’s momentum

state, and the second index is the bit index. Note that as usual, the first index

is taken modulo B, for example

nal ≡ n mod B(a)l. (5.1)

Therefore, the total particle count in a momentum state is obtained by summing

over channel bits where the lth-occupation variable is weighted by 2l as follows

na ≡
L−1∑
l=0

2lnal. (5.2)

Similarly, the collision operator for the total particle count is defined by

Ωa ≡
L−1∑
l=0

2lΩal. (5.3)
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Figure 5.1: Binary exponential encoding and bit layout for an integer lattice gas with L
bits per momentum state.

The local microdynamics consist of collision and streaming phases as usual in

lattice gas dynamics. The collisional phase reorders the particle counts locally

at each site

n′
al(~x, t) = nal(~x, t) + Ωal[~n(~x, t)], (5.4)

and in the streaming phase the particle counts at ~x “hop” to the neighboring

site at ~x+ `êa and time is incremented by τ

nal(~x+ `êa, t+ τ) = nal(~x, t). (5.5)

Combining these two equations and summing over the bit index, the particle

counts obey the usual lattice gas equation:

na(~x+ `êa, t+ τ) = na(~x, t) + Ωa[~n(~x, t)]. (5.6)

This is identical to (2.23) for the L = 1 case.
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5.2 Mesodynamics

5.2.1 Equilibrium Distribution

The probability of having a bit occupied in an integer lattice gas satisfying semi-

detailed balance is still determined by ensemble averaging and must have the

form of a Fermi-Dirac distribution. Since the lth-bit denotes a particle of mass

2lm, the Fermi-Dirac distribution is

fal ≡ 〈nal(x)〉 =
1

exp (−2lm(α+ cβieai)) + 1
. (5.7)

As usual one may define the mass density in terms of a sum over the ensemble

average of occupation variables

ρ(x) ≡
B∑

a=1

L−1∑
l=0

2lm〈nal(x)〉 =
B∑

a=1

m〈na(x)〉, (5.8)

and similarly for the momentum density

ρ(x)vi(x) ≡
B∑

a=1

L−1∑
l=0

2lmceai〈nal(x)〉 =
B∑

a=1

mceai〈na(x)〉. (5.9)

An interesting consequence of binary exponential encoding is that a closed

form solution for the equilibrium distribution of the total channel counts is

obtained, which of course in not the Fermi-Dirac distribution. For convenience,

let us write the distribution function for the individual particles in terms of the

fugacity as follows

fal(za) =
1

z−2l

a + 1
. (5.10)

The definition of the fugacity is identical to (2.161) for the L = 1 case presented

above

za ≡ exp
(
mα+mc~β · êa

)
. (5.11)
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The probability of having a particular total channel count must be determined

by a weighted sum of L Fermi-Dirac distributions as follows

faL(za) ≡
∑L−1

l=0 2lfal(za)∑L−1
l=0 2l

(5.12)

It is worthwhile to find a closed form expansion for (5.12). Using (5.10) with

some mathematical manipulations allows us to rewrite the argument of the sum

as follows

faL(za) =
1

2L − 1

L−1∑
l=0

(
2l

z−2l − 1
− 2l+1

z−2l+1 − 1

)
. (5.13)

Now this finite telescoping series (5.13) for the probability of a channel count

has the following closed form sum

faL(za) =
1

2L − 1

(
1

z−1
a − 1

+
2L

z−2L

a − 1

)
. (5.14)

This distribution is plotted in Figure 5.2 for several values of L from L = 1 to

L = 10. A quite interesting alternative way to directly arrive at (5.14) is to make

use of some reasoning from statistical mechanics. This alternative approach is

presented in the following section and sheds light on the behavior of the integer

lattice gas equilibrium distribution function.

5.2.2 Boltzmann Equation

A collision state, denoted by s, at some site of the lattice has B × L bits. We

write the collision state as a vector

s = (n1,0, . . . , nB,0 ; · · · ; n1,L−1, . . . , nB,L−1). (5.15)
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Figure 5.2: Fractional occupation versus fugacity for an integer lattice gas for L = 1 to
L = 10. At high values of L the distribution becomes a step function.

The probability in the Boltzmann limit for a site of the lattice being in this

configuration can be written as usual in factorized form as

Ps =
B∏

a=1

L−1∏
l=0

fnal

al (1 − fal)1−nal . (5.16)

We define the mean field collision operator, in the mean-field limit, in the usual

fashion in terms of the Boltzmann probability

Ωmf
al =

∑
ss′

(n′
al − nal)P (s, s′). (5.17)

We write the distribution function in series with diffusive ordering in ε2 ∼ `2 ∼ τ

as is usual in a Chapman-Enskog expansion: fa = f
(0)
a + εf

(1)
a + · · ·. We

then make a linear approximation by Taylor expanding the mean field collision

operator

Ωmf
al '

B∑
b=1

Jal,bf
(1)
b . (5.18)
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where the Jacobian of the collision operator must now be determined using the

chain rule as follows

Jal,b =
L−1∑
m=0

∂Ωmf
al

∂fbm

∂fbm/∂zb

∂fb/∂zb
. (5.19)

Note that the partial derivative ∂fbm

∂fb
is determined by taking a ratio of deriva-

tives of the numerator and denominator with respect to the fugacity zb. This is

mathematically convenient because one knows the analytical form of the distri-

bution function in terms of the fugacity using (5.10). The Boltzmann equation

to order ε2 is the following

∂tfa + ceai∂ifa +
`2

2τ
eaieaj∂i∂jfa =

1
τ

B∑
b=1

f
(1)
b

L−1∑
l=0

2lJal,b︸ ︷︷ ︸
Jab

. (5.20)

This is the expected mesoscopic transport equation so long as the following

definition holds

Jab ≡
L−1∑
l=0

2lJal,b. (5.21)

From this lattice Boltzmann equation the continuum equations are determined

by expressing the distribution function in terms of the macroscopic variables of

mass density and momentum density.

5.2.3 Chapman-Enskog Expansion

In a fashion identical to the analysis carried out in §2.4.1, for an integer lattice

gas the equilibrium probability for finding particles in momentum state mceai

at position ~x at time t is given by

f (0)
a = faL(za) (5.22)
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whose closed analytical form is written above in (5.14). This is the essential

difference from the L = 1 case presented in Chapter 2; that is, the form of the

distribution function is no longer Fermi-Dirac. Otherwise, all the calculations

carried out for the L = 1 case carry over directly to the L > 1 case treated here.

The fugacity is defined as

za = exp [m(αρ + cαu
i eai)] . (5.23)

Note that αρ and αu
i are functions of ρ(~x, t) and vi(~x, t), as will be shown

below. It is straightforward to do a Taylor expansion of the fugacity about

zo = exp(mαρ), which gives the subsonic limit expansion

za = zo

(
1 +mcαu

i eai +
1
2
m2c2αu

i α
u
j eaieaj + · · ·

)
. (5.24)

Inserting the deviation in the fugacity δz ≡ za − zo into a Taylor expansion of

f
(0)
a about zo then gives

f (0)
a = faL(zo) + f

′
aL(zo)δz +

1
2
f

′′
aL(zo)δz2 + · · · (5.25)

= faL(zo) +
[
zf

′
aL

]
z=zo

mcαu
i eai +

1
2

[
zf

′
aL + z2f

′′
aL

]
z=zo

m2c2αu
i α

u
j eaieaj +

O(c3) (5.26)

Inserting (5.26) into the first moment (2.105) and second moment (2.106) of

f
(0)
a gives the following expressions for the particle density

ρ = mBfaL(zo) +
m3c2B

2D

[
zf

′
aL + z2f

′′
aL

]
z=zo

(αu)2 (5.27)

and the momentum density

ρvi =
m2c2B

D

[
zf

′
aL

]
z=zo

αu
i , (5.28)
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respectively. Manipulating (5.27) and (5.28) allows us to solve for αu
i and then

faL(zo)

faL(zo) = d− Dd2v2

2c2

[
zf

′
aL + z2f

′′
aL

(zf ′
aL)2

]
z=zo

, (5.29)

where the reduced density d ≡ ρ
mB is used. Therefore it is possible to express the

equilibrium particle distribution as an expansion in ρ and vi by inserting (5.28)

and (5.29) into (5.26) to obtain the desired result for the subsonic expansion

about the fluid’s equilibrium density faL(zo) = d:

f
(0)
aL (za) = d

(
1 +

D

c
eaivi + gL

D(D + 2)
2c2

Qaijvivj

)
+ O(v3) (5.30)

where the following identifications are made

Qaij ≡ eaieaj − δij
D

(5.31)

and Galilean prefactor

gL =
d

2L − 1
D

D + 2

[
zf ′

L − z2f ′′
L

(zf ′
L)2

]
z=zo

. (5.32)

5.2.4 First Correction to the Equilibrium Distribution

We can obtain the mean field collision operator along channel a by summing

(5.18) over all particle masses as follows

Ωmf
a =

2L−1∑
l=0

2lΩmf
al =

B∑
b=1

Ja,bf
(1)
b . (5.33)

where (5.21) has been used. As in the L = 1 case (2.171) the same propagation

equation for L > 1 holds true

Ωmf
a (f) = `eai∂if

(0)
a + O(ε2). (5.34)
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Figure 5.3: Galilean factor versus fractional occupation for an integer lattice gas for L = 1
to L = 10 for D = 2 dimensions. At high values of L the g-factor flattens and approaches a
value of 2D

D+2 at low densities.

Equating our expressions for the mean field collision operator, (5.33) and (5.34)

B∑
b=1

Jabf
(1)
L (zb) = eai∂if

(0)
L (za), (5.35)

the first order correction to the equilibrium distribution function is obtained

f
(1)
L (za) = dτD

B∑
b=1

J−1
ab ebiebi∂ivj . (5.36)

Using the J-theorem (2.175) we write the distribution function to order ε as

fL(za) = d+ d
D

c
eaivi + dgL

D(D + 2)
2c2

Qaijvivj − dλ
D

c
eaieai∂ivj (5.37)

where the eigenvalue λ is given by

λ =
−`∑

ab Jab(êa · êb)2
. (5.38)

It is quite remarkable that this expression for the distribution function (5.37)

is identical to that given for the L = 1 case in (2.187) provided the prefactor is
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Table 5.1: All terms of the grand partition function for a simple integer lattice gas (B = 1,
V = 2, L = 2)

N {n} Degeneracy z-factor
6 {3, 3} 1 z6

5 {2, 3} 2 2z5

4 {2, 2} 1 3z4

{3, 1} 2
3 {2, 1} 2 4z3

{3, 0} 2
2 {2, 0} 2 3z2

{1, 1} 1
1 {1, 0} 2 2z1

0 {0, 0} 1 1

replaced (g → gL). The Galilean prefactor gL is plotted in Figure 5.3 for L = 1

up to L = 10. Galilean invariance is recovered exactly in two dimensions for low

densities at large L values, since 2D/(D+2) = 1 for D=2. In three dimensions,

particular densities give gL = 1, since 2D/(D + 2) > 1 for D=3.

Remark:

A critical value of dc ∼ 0.1 is observed were gL becomes flat for large L values.

This is a kind of symmetry breaking in the Galilean invariance that occurs for

an integer lattice gas. The fact that Galilean invariance is recovered at low

densities is consistent with the earlier observation that the integer lattice gas

becomes identically a Bose-Einstein lattice gas at large L and low densities.

The critical value dc ∼ 0.1 occurs at fractional occupations where the integer

distribution function departs from the Bose-Einstein distribution function. See

Figure 5.5.
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5.2.5 Statistical Mechanics

The results for the integer lattice gas system contained in the subsection entitled

“Bose-Einstein Statistics” and in the subsection entitled “Galilean Invariance”

of this section §5.2.5 are fascinating. The L → ∞ case is treated, and it is

shown that the system obeys Bose-Einstein statistics. In expression (2.91),

summing over all possible configurations will give all possible polynomials with

unit coefficients in the fugacity.1 Therefore, (2.91) can be simplified by doing a

binary count over all integer powers of the fugacity by exchanging the sum and

product as follows

Ξ =
∏
xa

2L−1∑
n=0

zn
a . (5.39)

This is the most compact and useful form of the grand partition function. Notice

that in (5.39) the exponent is now independent of a since we are directly counting

all integer powers of the fugacity going from the empty system n = 0 up to the

completely filled system at n = 2L − 1.
1As a concrete example consider an integer lattice gas with B = 1, V = 2, and L = 2. For

simplicity consider a system at rest with Vi = 0. The Hamiltonian and total density are

H =
X

x

En(~x) ρtot =
X

x

mn(~x).

The fugacity is z = exp(−βE +µm). Summing the z-factors from Table 5.1 in the text above,
the grand partition function is

Ξ =
X

{n}

Y

x

zn

= 1 + 2z + 3z2 + 4z3 + 3z2 + 2z5 + z6 = (1 + z + z2 + z3)2

=

0

@
2L−1X

n=0

zn

1

A

V

=
Y

x

2L−1X

n=0

zn.

This simple example shows how the sum and product are to be interchanged.
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The grand partition function can then be re-expressed as

Ξ =
∏
xa

2L−1∑
n=0

zn
a

=
∏
xa

L−1∏
l=0

1∑
n=0

z2ln
a (5.40)

=
∏
xa

L−1∏
l=0

(
1 + z2l

a

)
. (5.41)

Note that in the second line above the sum
∑2L−1

n=0 was written as
∏L−1

l=0
∑1

n=0.

In the present case, base two is the correct choice, however this type of re-

expression of the sum can be accomplished in any base.2 The logarithm of the

grand partition function is

log Ξ =
∑
xa

L−1∑
l=0

log
(
1 + z2l

a

)
. (5.42)

Since ∂za/∂β = −Eaza, then expected energy is

〈E〉 = −∂ log Ξ
∂β

=
∑
xa

L−1∑
l=0

2lz2l

a

1 + z2l

a

Ea. (5.43)

The expected energy is also

〈E〉 =
∑
xa

FL(z)Ea, (5.44)

2As a concrete example note that

23−1X

n=0

zn = 1 + z2 + z3 + z4 + z5 + z6 + z7

= (1 + z)(1 + z2)(1 + z4)

=
3Y

l=0

(1 + z2l
) =

3Y

l=0

1X

n=0

z2ln

32−1X

n=0

zn = 1 + z2 + z3 + z4 + z5 + z6 + z7 + z8

= (1 + z + z2)(1 + z3 + z6)

=
1Y

l=0

(1 + z3l
+ z(3l)2) =

1Y

l=0

2X

n=0

z3ln.
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so the distribution is immediately identified

FL(za) =
L−1∑
l=0

2lz2l

a

1 + z2l

a

. (5.45)

This is a sum over Fermi-Dirac functions where the lth-level is exponentially

weighted by 2l. Consider the identity for a finite geometric series

N−1∑
n=0

xn =
1 − xN

1 − x
(5.46)

for any x. Using this identity, the grand partition function (5.39) can be written

as

Ξ =
∏
xa

2L−1∑
n=0

zn
a

=
∏
xa

1 − z2L

a

1 − za
(5.47)

Note that since za is not a function of x, the grand partition function sums to

the following closed analytical form

Ξ =
∏
a

(
1 − z2L

a

1 − za

)V

. (5.48)

−→ log Ξ =
∑
xa

[
log
(
1 + z2l

a

)
− log (1 + za)

]
. (5.49)

Since ∂za/∂β = −Eaza, then

−∂ log Ξ
∂β

=
∑
xa

(
za

1 − za
− 2Lz2L

a

1 + z2L

a

)
Ea. (5.50)

The expected energy is then

〈E〉 ≡ −∂ log Ξ
∂β

=
∑
xa

FL(z)Ea, (5.51)

where the distribution is immediately identified

FL(za) =
1

z−1
a − 1

− 2L

z−2L

a + 1
. (5.52)
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This is a closed form analytic expression for the distribution function.3 The

results of this section have been worked out elsewhere [16] but are included

here for completeness to aid in the subsequent development. The fractional

occupation is obtained from (5.52) by dividing by the maximum number of

particles per channel which is 2L − 1 so that

fL(za) ≡ 1
2L − 1

(
1

z−1
a − 1

− 2L

z−2L

a + 1

)
. (5.55)

This is identical to (5.14).

Fermi-Dirac Statistics (L = 1 Limit)

Consider a single-speed L = 1 lattice gas. It is quite simple to check the single

particle distribution is the Fermi-Dirac function, (2.97), by evaluating FL at

L = 1

F1(z) = lim
L→1

FL(z) (5.56)

= lim
L→1

(
1

z−1 − 1
− 2L

z−2L + 1

)
(5.57)

=
1

z−1 − 1
− 2
z−2 + 1

(5.58)

=
1

z−1 + 1
. (5.59)

Q.E.D.
3Equating the result (5.45) with (5.52), we find the following identity

L−1X

l=0

2lz2l

a

1 + z2l
a

=
1

z−1
a − 1

− 2L

z−2L

a + 1
. (5.53)

This is expected since the L.H.S. can be written as a telescoping series

L−1X

l=0

2lz2l

a

1 + z2l
a

=
L−1X

l=0

2l

z−2l − 1
− 2l+1

z−2l+1 − 1
. (5.54)
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Bose-Einstein Statistics

Consider a single speed L = ∞ integer lattice gas. In this case the grand

partition function can be straighforwardly calculated. To begin with, one may

derive, in the usual fashion of the statistical mechanics for a system of bosonic

particles, the grand partition function as follows

Ξ =
∏
xa

∞∑
n=0

zn
a

=
∏
xa

1
1 − za

(5.60)

−→ log Ξ =
∑
xa

log
(

1
1 − za

)
(5.61)

Since ∂za/∂β = −Eaza, then

−∂ log Ξ
∂β

=
∑
xa

za

1 − za
Ea. (5.62)

The expected energy is then

〈E〉 ≡ −∂ log Ξ
∂β

=
∑
xa

F∞(z)Ea, (5.63)

where the Bose-Einstein distribution is immediately identified

F∞(za) =
1

z−1
a − 1

. (5.64)

This is a well known result. The Bose-Einstein distribution function is plotted

versus occupation number in Figure 5.4. This function diverges for unit fugacity.

It is possible to obtain the Bose-Einstein distribution (5.64) by taking the

L = ∞ limit of the integer lattice gas distribution function (5.52) as follows

F∞(z) = lim
L→∞

FL(z) (5.65)
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Figure 5.4: Occupation number versus fugacity for a Bose-Einstein lattice gas.

= lim
L→∞

(
1

z−1 − 1
− 2L

z−2L + 1

)
(5.66)

=
1

z−1 − 1
− lim

L→∞
2Lz2L

1 + z2L (5.67)

The first term on the R.H.S. is the Bose-Einstein function and the second term

vanishes. To see why this is indeed the case, let us examine the limits of the

numerator and denominator separately. For the case when z ≥ 1 the Bose-

Einstein function diverges (in fact in the first derivation of the Bose-Einstein

distribution (5.64), the geometric series is only finite in the case of z < 1).

Consider the situation where z < 1. Making a variable substitution m = 2L,

the limit of the numerator is

lim
L→∞

2Lz2L

= lim
m→∞

m

z−m
=

∞
∞ , (5.68)

which is indeterminate. Therefore, we can use L’Hospital’s rule to evaluate this

lim
m→∞

m

z−m
=

1
limm→∞ z−m log z

=
1
∞ = 0. (5.69)
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The limit of the denominator is simply unity

lim
L→∞

(
1 + z2L

)
= lim

m→∞ (1 + zm) = 1. (5.70)

Then

lim
L→∞

2Lz2L

1 + z2L =
0
1

= 0. (5.71)

Therefore

F∞(z) =
1

z−1 − 1
. (5.72)

This is the expected result.4

To understand the limiting behavior of the integer lattice gas versus a Bose-

Einstein lattice gas it is sufficient to graphically plot their respective distribution

functions for several different values of L. To make the comparison it is necessary

that the Bose-Einstein fractional occupation is defined as

f∞(z) ≡ 1
2L − 1

(
1

z−1 − 1

)
. (5.73)

A plot of the Bose-Einstein fractional occupation (5.73) for several values of

L is plotted in Figure 5.5. For comparison purposes, the the integer lattice

gas fractional occupation (5.14) is overplotted. The two distribution functions

(5.73) and (5.14) become identical for large L values. It is clear from Figure 5.5

that for practical purposes an L = 16 integer lattice gas5, for example, would
4The identity that a weighted Fermi-Dirac series of rational fractions converges to the Bose-

Einstein distribution is known, see identity 1.121.2 on page 22 of Gradshteyn and Ryzhik [42]:
for x2 < 1,

1
x − 1

=
∞X

l=0

2l

x2l + 1
.

5L = 16 is a convenient choice for a computer implementation since two-byte integers can
be used to encode the momentum states.
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Figure 5.5: Fractional occupation versus fugacity for a Bose-Einstein lattice gas and an
integer lattice gas in D = 2 dimensions ranging from L = 8, . . . , 12. The two distribution
functions become identical at large L values.

be a very good model of a Bose-Einstein lattice gas.6

Galilean Invariance

It is straightforward to calculate the Galilean prefactor for the Bose-Einstein

lattice gas. We will need the first and second derivatives of F∞(z) with respect

to the fugacity. These derivatives are

F ′
∞(z) =

1
(1 − z)2

(5.74)

F ′′
∞(z) =

2
(1 − z)3

. (5.75)

Then the Galilean prefactor as a function of the fugacity is

g∞(z) = F∞
D

D + 2

[
zF ′

∞ + z2F ′′
∞

(zF ′∞)2

]
=

D

D + 2
(1 + z). (5.76)

6The local collision operator for an L = 24 integer lattice gas has been implemented by a
polytope acceptance-rejection technique [16].
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Figure 5.6: Galilean prefactor versus occupation number for a Bose-Einstein lattice gas in
D = 2 dimensions. Galilean invariance emerges for large occupation numbers.

A parametric plot of the Galilean prefactor, g∞(z), versus the occupation num-

ber, F∞(z), using the fugacity as the parameter is given in Figure 5.6. The

Galilean prefactor becomes a constant at high occupations, which occurs at

z = 1 since the distribution function is singular there

lim
z=1

g∞ =
2D
D + 2

. (5.77)

In two-dimensions (D = 2) the Galilean prefactor becomes unity and invariance

is recovered in the macroscopic limit in the sense that the dynamics is identical

in all moving frames of reference.

5.3 Macrodynamics

This section on the macroscopic dynamical behavior of the integer lattice gas

closely parallels the treatment presented for the L = 1 case of §2.5. Therefore

in this section I will give just an abridged version of the macroscopic analysis.
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The macroscopic equations of motion are determined from mass conservation

(continuity equation)

∂tρ+ ∂i(ρvi) = 0 (5.78)

and momentum conservation (Euler’s equation)

∂t(ρvi) + ∂jΠij = 0. (5.79)

The momentum flux density is

Πij = pδij + gLρvivj − ρc

D + 2
(λ− `

2
)∂jvi. (5.80)

With sound speed cs ≡ c√
D

, the pressure is

p = ρc2s

(
1 − gL

v2

c2

)
. (5.81)

Inserting (5.80) into Euler’s equation (5.79), the Navier-Stokes equation for

viscous incompressible flow emerges

ρ∂tvi + g
L
ρvj∂jvi = −∂ip+ η∂2vi, (5.82)

with shear viscosity

η =
ρc

D + 2

(
λ− `

2

)
. (5.83)

This completes the analysis of the integer lattice gas.
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Chapter 6

The Simplest Integer
Lattice Gas (L = 2)

6.1 Introduction

The simplest integer lattice gas is an L = 2 model in two dimensions on the

triangular lattice with lattice coordination number B = 6. With two bits per

channel, one can encode up to three particles in each momentum state so there

can be up to 18 particles per site. The total number of on-site particle con-

figurations is 2BL = 4096. The number of equivalence classes is 1097, with

693 containing more than one member and with 404 trivial equivalence classes

containing only a single member. Of the 693 contributing equivalence classes,

128 are independent modulo the isometries of the triangular lattice. That is,

the total momentum vectors of the contributing equivalence classes all reside in

an angular sector ranging from 0 to 2π
B radians. The number of independent

equivalence classes is further reduced by the constraint of particle-hole sym-

metry. I provide a complete list of all the independent equivalence classes for

the L = 2 integer lattice gas (see Appendix E). There are 71 such equivalence
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classes enumerated below ranging from two particles per site up to half-filling,

or nine particles per site. The largest equivalence class has 18 members. For a

two dimensional isothermal fluid, there are three additive conserved quantities

that are invariant with respect to the dynamics. These are the mass, m, and

two components of the momentum, px and py. Letting NEC denote the number

of members contained in an equivalence class, each equivalence class is specified

in the following fashion

{NEC ,m, 2px,

√
3

2
py, {n0, n1, . . . , nB}, . . . , {n0, n1, . . . , nB}︸ ︷︷ ︸

NEC−number of members

}

 

2 

1 1 

1 3 

2 

2 

2 2 

3 

1 

1 

3 

3 

1 

1 

1 2 

m = 8       px = 3       py =  − 4/√3 

       L=2 Integer Lattice Gas 
Four Element Equivalance Class 

Figure 6.1: An example equivalence class for an L = 2 integer lattice gas for D = 2 and
B = 6 that has eight particles and nonzero momentum components.

As an example of this notation, consider the FHP lattice lattice gas described
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in Chapter 3. With only two-body and three-body symmetric collisions, the

FHP lattice gas uses only two equivalence classes each with zero momentum

{3, 2, 0, 0, {0, 0, 1, 0, 0, 1}, {0, 1, 0, 0, 1, 0}, {1, 0, 0, 1, 0, 0}},

{2, 3, 0, 0, {0, 1, 0, 1, 0, 1}, {1, 0, 1, 0, 1, 0}}.

This collision set is depicted in Figure 3.2 of §3.2.2, and is a subset of the full

collision set for the L = 2 generalization presented here. Using the same nota-

tional format, the list given in Appendix E defines the full collision set for the

L = 2 integer lattice gas. Here, for illustrative purposes, consider the following

four-element equivalent class which is only one of the equivalence classes of the

L = 2 integer lattice gas for D = 2 and B = 6 presented in the appendix. This

equivalence class has eight particles with nozero x and y components for the

total momentum at a site:

{4, 8, 6, 2, {2, 1, 1, 0, 1, 3}, {2, 2, 0, 0, 2, 2}, {3, 0, 1, 1, 0, 3}, {3, 1, 0, 1, 1, 2}}.

This equivalence class is depicted in Figure 6.1. In an implementation of this

collision table on the CAM-8 prototype, a uniform transition matrix is used of

the type given in §2.1.3. That is, the probability of a member of a particular

equivalence class transitioning to another configuration within that equivalence

class is chosen randomly and uniformly. So the transition probability equals the

inverse of the size of the equivalence class: 1
‖T‖ . The model therefore satisfies

detailed balance. Furthermore, an auxiliary local rule is used to generate ran-

dom numbers in a reversible fashion. The update procedure for a local collision
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is carried out as follows. The local state is examined and its mass and momen-

tum are computed to determine its equivalence class. A precomputed table is

read that provides the size of the equivalence class. The local random number is

then taken modulo the equivalence class size minus one to choose another mem-

ber of the equivalence class to replace the current local configuration. With a

reversible random number generator, all the integer lattice gas dynamics in turn

remain reversible.

Remark:

A quite interesting and natural property of this computational construction is

that on the one hand the transition matrix describes a statistical detailed bal-

ance process while on the other hand the actual computer implementation of the

integer lattice gas is in fact absolutely reversible and deterministic.

The reversibility of the model was demonstrated on the CAM-8 prototype as

is customarily done to check the consistency of the computer implementation. A

more complete description of the computer implementation of this integer lattice

gas, applicable to the workstation or the CAM-8, is given in Appendix E.

6.2 A Numerical Test of the Kinematic Shear
Viscosity

In this section I wish to demonstrate the consistency of mean-field analysis of the

integer lattice gas given in the previous chapter using the L = 2 integer lattice

gas by comparing the theoretical prediction of the kinematic shear viscosity with

numerically measured values of the shear viscosity. First of all, it is necessary
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to determine an explicit expression for the kinematic viscosity for the particular

L = 2 collision set provided earlier in this chapter. We begin by inserting (5.17)

into (5.19) to allow us to write the Jacobian of the collision operator in terms

of the fugacity as follows

Jab(z) =
∑
ss′

(n′
a − na)

∑
m

∂P (s, s′)
∂fbm

∂fbm/∂zb

∂fb/∂zb

=
1
zF ′

L

∑
ss′

(n′
a − na)nbP (s, s′)

=
1
zF ′

L

(
1 − z

1 − z2L

)B∑
ss′

(n′
a − na)nbz

p, (6.1)

where p = p(s) is the total particle count in collision s → s′. Therefore, Jab(z)

is specified in terms of a complex rational polynomial function of the fugacity.

Inserting (5.38) into (5.83) the kinematic viscosity ν ≡ η
ρ in turn is known as a

function of the fugacity

ν(z) =
l2

τ

1
D + 2

( −1∑
ab Jab(z)(êa · êb)2

− 1
2

)
. (6.2)

Inserting (6.1) this can be rewritten as

ν(z) =
l2

τ

1
D + 2


(1 − z2L

1 − z

)B −zF ′
L∑

ab

∑
ss′(n′

a − na)nbzp(êa · êb)2
− 1

2


 . (6.3)

Using the full collision set given in the previous section, the sum over collision

events in the denominator of the above expression will be a 16th-order polyno-

mial1 in z

∑
ab

∑
ss′

(n′
a − na)nbz

p(êa · êb)2 = −6z2 − 54z3 − 219z4 − 571.285714z5 − 1086.9z6

1The lowest order non-zero coefficient will be quadratic corresponding to two-body col-
lisions and likewise because of particle-hole symmetry the highest order non-zero coefficient
will be (2L − 1)B − 2 = 16, corresponding to the collision of two holes.
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−1688.683516z7 − 2218.651948z8 − 2466z9

−2218.651948z10 − 1688.683516z11 − 1086.9z12

−571.285714z13 − 219z14 − 54z15 − 6z16. (6.4)

Note that the coefficients are symmetric about half-filling, z9. For an L = 2

integer lattice gas the fractional occupation as a function of the fugacity is

fL=2(z) =
1
3

(
z

1 − z
− 4z4

1 − z4

)
. (6.5)

Therefore, it is straightforward to plot the kinematic viscosity ν(z) as a function

of the fractional occupation f(z) parametrically in the fugacity (see the solid

curve in Figure 6.3).

The numerical data overplotted in Figure 6.3 was computed on the CAM-8

prototype. A numerical simulation of the L = 2 integer lattice gas was carried

out on a 512×512 space. A sinusoidal velocity profile with wavelength equaling

the size of the space is used as an initial condition for a range of densities

from d = 0.1 up to d = 0.9 in steps of ∆d = 0.05. The resulting Navier-

Stokes dynamics causes an exponential decay of the velocity sinusoid by viscous

damping. A similar numerical experiment was carried out for the usual L = 1

case; see Method 2 of §3.3.1. On a log-linear plot the decay of the amplitude of

the sinusoidal profile is extremely linear (see Figure 6.2) and gives an accurate

measurement of the decay time constant which equals k2ν. Consequently, this

allows us to determine the kinematic viscosity ν numerically in a straightforward

manner. The comparison of the mean-field theory and numerical experiment is

quite good for medium densities, as can be seen in Figure 6.3. The departure

160



0 2000 4000 6000 8000 10000
time

nu=0.621677     d=0.9
momentum

0 2000 4000 6000 8000 10000
time

nu=0.61056     d=0.1
momentum

0 2000 4000 6000 8000 10000
time

nu=0.233241     d=0.35
momentum

0 2000 4000 6000 8000 10000
time

nu=0.224844     d=0.65
momentum

(a) (b) 

(c) (d) 

Figure 6.2: Log-log plot of the decay of a sinusoidal velocity profile for an L = 2 integer
lattice gas with a full collision set with statistical detailed-balance. The decay of velocity
profiles at four different densities, d = 0.1, 0.25, 0.65, and 0.9, are plotted. The linear fit is
extremely good at all densities. The data were computed on the CAM-8 on a 512 × 512
simulation space. At each density 50 data points were taken at intervals of 200 time steps.

of theory from experiment at low and high densities is typical for this kind of

comparison and also exists for an L = 1 lattice gas. However the departure for

the L = 2 lattice gas is greater than expected and perhaps is due to correlations

that are neglected in the mean-field calculation.

6.3 Channel Sampling Algorithm

I have implemented a two-dimensional L = 4 integer lattice-gas on a triangular

lattice. In this case the number of collision configurations is 24×6 = 16m. This
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Figure 6.3: Kinematic viscosity versus fractional occupation, or reduced density, of an
L = 2 integer lattice gas with a full collision set with statistical detailed-balance. The solid
curve represents a mean-field theoretical predictions and the data points represent numerical
measurements carried out on the CAM-8 uses the method of a decaying sinusoidal velocity
profile. The simulation was carried out on a 512 space. The comparison of theory and
numerical experiment is good at medium densities.
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is small enough to store in a lookup table format so that the full collision set

is implemented as in the L = 2 example given above. However, for cases with

larger values of L, storing the full lookup table is impractical. Therefore, an

alternative method that is suitable for large L integer lattice gases is presented

here.

In an integer lattice gas a group of L bits is used to encode a particle count

in each momentum state. We refer to this group of bits as a channel. To reduce

the size of the lookup table, one selects only subsets of the channels for updating

in a successive manner. Enough channel subsets are selected so that all channels

have the opportunity for updating. An example of this algorithm is described

in this section for an implementation on the CAM-8 prototype; it is constrained

to no more than 216 = 64k collision configurations.

Let us denote the channels by n1, n2, . . . , n6 and the rest-particle channel

by n0. Let {~n} denote set of a four channels, where ~n = (nA, nB , nC , nD). If

d is the background density, define the particle deviations A, B, C, and D, as

follows

nA = 2Ld+A (6.6)

nB = 2Ld+B (6.7)

nC = 2Ld+ C (6.8)

nD = 2Ld+D. (6.9)

(6.10)

A collision set has the property that the first two channels of the set form a pair,
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the AB-pair, and the last two channels in the set form a pair, the CD-pair, in

such a way that a four-channel HPP-type collision can occur between the two

pairs. For example, {n1, n2, n3, n4} is an appropriate collision set. So only

those operations that act on a collision set {A,B,C,D} that transfers particles

between the AB-pair and the CD-pair are used. The collision operator is

Ω =
1

23L

[
nAnB(2L − nC)(2L − nD) − nCnD(2L − nA)(2L − nB)

]
. (6.11)

We can also write this collision operator as follows

Ω = (A+B−C−D)d(1−d)+ 1
2L

(AB−CD)(1−2d)− 1
22L

[AB(C +D) + CD(A+B)] .

(6.12)

This way of writing Ω shows its explicit dependence on d. The practicality of

this form of the collision operator comes from the fact that one can use the

bits in an integer lattice gas simulation to directly encode the deviations of the

particle counts from their mean value. In this way a greater “dynamic range”

is achieved. The look-up tables generated depend on the background density.

This is a unique feature of an integer lattice gas.

Since finite integer mathematics is used, there may be some numerical round-

off error in doing the divisions in (6.11). This is corrected by the following

procedure. The particle count that passes from one pair to the other is called

the transfer amount and is denoted T . If Ω < 0 then

T = min(A,B, 2L − C, 2L −D,Ω), (6.13)

or else for Ω > 0 then

T = min(2L −A, 2L −B,C,D,Ω). (6.14)
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This ensures the transfer amount does not exceed either the number of particles

in the losing channels or the number of holes in the gaining channels. Then if

the update procedure

A′ = A− T (6.15)

B′ = B − T (6.16)

C ′ = C + T (6.17)

D′ = D + T (6.18)

(6.19)

is used, the dynamics is unconditionally stable.

A complete collision operator to take us from one input state at time t to an

output state at time t+ τ is constructed by choosing a number of collision sets

and then arranging them in a particular sequence. With B = 6 channels there

are three possible collision sets (see Figure 3.1). They are

{n1, n4, n3, n6}

{n1, n4, n5, n2}

{n5, n2, n3, n6}.

If a rest particle channel, n0, is included, then there are six additional possible

collisions sets. They are

{n5, n0, n4, n6}

{n1, n3, n2, n0}
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{n5, n1, n6, n0}

{n3, n0, n2, n4}

{n1, n0, n2, n6}

{n5, n3, n4, n0}.

We define a forward collision sequence, denoted by ~nf , by the following 9 colli-

sion sets

{n5, n0, n4, n6}

{n1, n3, n2, n0}

{n1, n4n3, n6}

{n5, n1, n6, n0}

{n3, n0, n2, n4}

{n1, n4, n5, n2}

{n1, n0, n2, n6}

{n5, n3, n4, n0}

{n5, n2, n3, n6}

The reverse collision sequence, denoted by ~nr, is a sequence in just the reverse

order of ~nf . For the purpose of analytical calculations, the microdynamical

update equation with a recursive collision operator is the following

n = n+ Ω[(~n+ Ω[~nf ])r]. (6.20)
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The transition probability for a particular collision will then be T (n → n′) = 1
2 .

In the computer implementation of an integer lattice gas, I actually use

the following decomposition in time. On even time steps the forward collision

sequence is used and on odd time steps the reverse collision sequence is used.

n(1) = n(0) + Ω[~n(0)f ] (6.21)

n(2) = n(1) + Ω[~n(1)r]. (6.22)

(6.23)

It is necessary to use this alternating method to ensure that chirality effects do

not induce any spurious invariants.

Examples of L = 2 and L = 4 integer lattice gas simulations are given

in Figures 6.5 and 6.4 illustrating the Von Karman instability. In fact the

latter simulation illustrates the transition from laminar to chaotic flow. This

significance of this numerical test is to verify that the integer lattice gas behaves

as a Navier-Stokes fluid as predicted and to provide a qualitative test of the

model. The L = 2 integer lattice gas using the table lookup algorithm described

in Appendix E. This L = 2 integer lattice gas was only a few times slower than

the L = 1 gas. The L = 4 integer lattice gas running on the CAM-8 using the

channel sampling algorithm described in this section was an order of magnitude

slower than an L = 1 lattice gas on the CAM-8.

Note that here, a novel technique is used to visualize the flow past the

cylindrical obstacle. A second lattice gas with attractive nonlocal interparticle

interaction “floats”, in its liquid phase, above the integer lattice gas. This
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liquid is injected on the left side of the simulation space at regular intervals and

is advected by the local momentum of the integer lattice gas. Bulk momentum

is filtered on the right side of the simulation to eliminate periodicity. The liquid

flow does not affect the hydrodynamics of the integer lattice gas and is simply

a passive fluid. Surface tension in the liquid allows a natural type of streamline

visualization very much in analogy with inserting tracer ink into water flow.

168



100 

300 

900 

2,700 

8,100 
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Re~42 

Re>102 

27,000 

Figure 6.4: Simulation on the CAM-8 prototype of flow past a cylinder. An L = 2 integer
lattice gas on a triangular lattice using uniform sampling by table lookup for detailed balanced
collisions on a 2048 × 1024 lattice was used. Time series plots from laminar flow, Re = 0,
through the vortex shedding regime, Re > 42, to the vortex street flow regime are shown. Fluid
streamlines are illustrated using a liquid tracer fluid (an L = 1 long range lattice gas) with no
coarse-graining. The first frame shown is at t = 100 and the last frame is at t = 29, 000. The
gas is at rest at t = 0, v = 0, and is quickly accelerated to a steady state low Mach number
background flow.
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Figure 6.5: Simulation on the CAM-8 prototype of flow past a cylinder. An L = 4 integer
lattice gas on a triangular lattice using a four channel sampling algorithm on a 2048 × 1024
lattice was used. Time series plots from laminar flow, Re = 0, through the vortex shedding
regime, Re > 42, to the chaotic flow regime, Re > 103 are shown. Fluid streamlines are
illustrated using a liquid tracer fluid (an L = 1 long range lattice gas) with no coarse-graining.
The first frame shown is at t = 1000 and the last frame is at t = 370, 000. The gas is at rest
at t = 0, v = 0, and is accelerated linearly to v = 0.4c at t = 370, 000. The diameter of
cylindrical obstacle is d = 128. The critical Reynolds number for vortex shedding, Re = 42,
occurs at approximately t ∼ 40, 000. The maximum Reynolds number achieved in simulation
is Re ∼ 1000.
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Chapter 7

Conclusion

7.1 Discussion

In this volume I have given a self-contained review of the foundations of the

lattice gas subject. Therefore, this volume will serve as the basis for more ad-

vanced lattice gas applications treated subsequently. I have included enough

material for the reader to understand how viscous hydrodynamic systems can

be modeled by this discrete particle dynamics on a crystallographic spacetime

lattice using only local collisions and streaming. This is ideally suited to parallel

computation and even offers a paradigm for a new fine-grained parallel comput-

ing architecture, which has taken the form of the CAM-8 prototype lattice gas

machine used to carry out the computations presented in this volume.

I have given a brief history of the subject and have tried to explain my

motivation for working with lattice gases, including the conceptual simplicity

and the inherent efficiency beyond continuum molecular dynamics. I have in-

troduced this discrete lattice based formalism by telescoping upwards in scale

from the microscopic domain of a discrete transport equation, to the mesoscopic
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domain of the lattice Boltzmann equation, up to the viscous and incompressible

Navier-Stokes equation in the macroscopic domain. I have shown that all the

coefficients in the Chapman-Enskog expansion, used as a bridge between meso-

scopic and macroscopic regimes, are completely determined, including the shear

viscosity transport coefficient. Consequently, the lattice gas particle dynamics

are completely defined by the geometry of the spacetime lattice.

I used lattice-tensors, formed by products of the lattice vectors summed

over all lattice directions and have shown that when these lattice-tensors are

isotropic the correct macroscopic equation of motion ensues. The choice of lat-

tice is the triangular lattice in two dimensions and the face centered hypercubic

lattice projected onto three dimensions since in these cases the lattice-tensors

are isotropic. Given a lattice, all the properties of the system were fixed.

The form of the macroscopic hydrodynamics is determined by the invariants

of the dynamics: mass, momentum, and energy. Therefore, the lattice gas

method is a first principles description of fluid dynamics. Yet I believe it will

find its greatest application in various generalized forms not treated in this

volume, in particular: first the generalization to include nonlocal interparticle

interaction so that complex hydrodynamics can be modeled at scales beyond

that achieved by a traditional molecular dynamics treatment; and second the

generalization to lattice based quantum computations where quantum behavior

can be numerically captured that is otherwise impossible by classical means.

These two generalization of the lattice gas methodology presented here each

deserve there own place and so volume II treats multiphase fluids and volume

172



III treats quantum fluids.

Nevertheless, a contribution of this first volume to lattice gas theory is a sta-

tistical mechanics treatment of lattice gases that is based on a grand partition

function for the system. In this first volume, the main result is a generalization

of a Boolean lattice gas to an integer lattice gas. By this generalization to the

integer case, Galilean invariance is restored and a slight reduction in viscosity is

achieved. Moreover, there is significant reduction in noisy density fluctuations.

These gains are important to a community interested in modeling for quantita-

tive purposes. And finally, the integer lattice gas retains detailed-balance in its

collisions, and in turn, so does its total dynamics. One achievement presented

in here is the mean-field calculation of the shear viscosity of an integer lattice

gas that is done in arbitrary dimensions. Verification of the prediction is by

comparision with exact numerical experiment, where the kinematic viscosity of

an L = 2 integer lattice gas fluid is measured on the CAM-8.

At the outset of my exploration of the integer lattice gas system, I had hoped

that a natural cross-over from Fermi-Dirac statistics to Bose-Einstein statistics

would be seen by going from the L = 1 limit to the infinite L limit. Remarkably,

this hope has in fact been realized. The Bose-Einstein distribution function is

indeed recovered in the L = ∞ limit. The statistics of integers is interesting in

this context, and the fractional distribution function is representable in simple

closed form. In Volume II, lattice-gas statistical mechanics is very useful since

it allows us to perform a Mayer cluster expansion of the equilibrium pressure

and consequently perturbatively determine the equation of state for a nonideal
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lattice gas fluid.

7.2 Summary of Lattice Gas Systems for Vis-
cous Fluids

7.2.1 Classical Integer Lattice Gas

n′
a(~x+ `êa, t+ τ) = na(~x, t) + Ωa[~n(~x, t)],

for momentum directions a = 1, . . . , B where the occupation variable is

na =
L−1∑
l=0

2lnal,

and the collision operator is

Ωa =
L−1∑
l=0

2lΩal.

7.2.2 Multispeed Lattice Gas

nσ
a(~x+ `~eσ

a , t+ τ) = nσ
a(~x, t) + Ωσ

a(~n(~x, t)). (7.1)

for momentum directions a = 1, . . . , B and speeds σ = 0, 1, . . . ,M .
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Appendix A

The Cellular Automata
Machine CAM-8

To better understand the lattice gas paradigm as a possible computing archi-

tecture, a prototype machine has been constructed, called the cellular automata

machine CAM-8 and is shown in figure A.1. The CAM-8 architecture [64, 63] is

the latest in a line of cellular automata machines developed by the Information

Mechanics Group at MIT [88, 91, 65]. The CAM-8 architecture itself is a simple

digital electronic realization of the lattice gas scheme, and in the early 1990’s

was tested against other parallel supercomputers and is optimal at perform-

ing lattice gas simulations [106]. Lattice gas data streaming and collisions are

directly implemented in the architecture.

One can think of the discrete memory space within the CAM-8 as an artificial

microworld. This provides several compelling opportunities. First of all, the

discrete microworld paradigm with simple local rules governing the system’s

evolution made it quite straightforward to construct the fine-grained parallel
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Figure A.1: MIT Laboratory for Computer Science cellular automata machine CAM-8. This
8 module prototype can evolve a D-dimensional cellular space with 32 million sites where each
site has 16 bits of data with a site update rate of 200 million per second. The communication
network is a Cartesian three-dimensional mesh. Crystallographic lattice geometries can be
directly embedded into the CAM-8.

CAM-8 out of elementary “chunks”.1 Figure A.2 is a schematic diagram of

a CAM-8 system. On the left is a single hardware module—the elementary

“chunk” of the architecture. On the right is an indefinitely extendable array of

modules (in the CAM-8 prototype the array is actually three-dimensional). A

uniform spatial calculation is divided up evenly among these modules, with each

module containing a volume of 16 million lattice sites. These sites are scanned
1An expanded machine, called the CAM-8-64 [90], in 1994 was designed to incorporate

a billion sites using the standard CAM-8 module. A new design using RAMBus memory
chips and field programmable gate arrays has recently been completed by Margolus and is
two orders of magnitude faster than the CAM-8.
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lookup

64Kx16

table

16

Mega-site

cell array

Figure A.2: CAM-8 system diagram. (a) A single processing node, with DRAM site data
flowing through an SRAM lookup table and back into DRAM. (b) Spatial array of CAM-8
nodes, with nearest-neighbor (mesh) interconnect (1 wire/bit-slice in each direction.

in a sequential pipelined fashion. In the diagram, a solid lines between modules

indicates a local mesh interconnection. These wires are used for spatial data

movements.2

The CAM-8 uses custom VLSI chips to control data movement and com-

modity dynamics random access memory (DRAM) to store its state data. Each

site of the lattice has 16 bits (or a multiple thereof). A 16-bit lattice site is also

referred to as a cell. Each bit of a cell is part of an entire bit plane of the lattice

which is stored in a single DRAM chip. Therefore, a bit plane can be “trans-

lated” through the lattice arbitrarily by off-setting the pointer to the zeroth
2There is also a tree network (not shown) connecting all modules to the front-end host, a

SPARC workstation with a custom SBus interface card, that controls the CAM-8. It down-
loads a bit-mapped pattern as the initial condition for the simulations. It also sends a “step-
list” to the CAM-8 to specify the sequence of kicks and scans that evolve the lattice gas in time.
One can view the lattice gas simulation in real-time since a custom video module captures
site data for display on a VGA monitor, a useful feature for lattice gas algorithm develop-
ment, test and evaluation. The CAM-8 has built-in 25-bit event counters allowing real-time
measurements without slowing the lattice gas evolution. This feature is used to do real-time
coarse-grain block averaging of the occupation variables and to compute the components of
the momentum vectors for each block. The amount of coarse-grained data is sufficiently small
to be transferred back to the front-end host for graphical display as an evolving flow field
within an X-window.
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memory address in the DRAM chip. The translation vectors for the bit planes

are termed kicks. The specification of the x,y, and z components of the kicks for

each bit plane (or hyperplane) defines the lattice geometry. The kicks can be

changed during the simulation. Thus, the data movement in the CAM-8 is quite

general. Once the kicks are specified, the coding of the lattice gas streaming

is completed. In effect, the kicks determine all the global permutations of the

data.

The CAM-8 runs through its discrete dynamics with absolutely no round-off

error so that in a lattice gas simulation all additive conserved quantities are kept

exactly fixed throughout the course of a simulation. Its processors are ultimately

simple, each able to act on only a small number of bits of information at a

time. This is sufficient for a classical lattice gas algorithm that only permutes

bits, never creating or destroying bits of information, just shuffling them about.

Permutations achieve particle-conserving reversible dynamics and are used in all

classical lattice gas implementations on the CAM-8. Local permutations of data

occur within the cells. These permutations are the computational metaphor for

physical collisions between particles. The CAM-8 uses commodity static random

access memory (SRAM) to store all the local state transitions, or local rules.3

Within a CAM-8 classical lattice gas simulation, all information is exactly

preserved in time, and as a consequence of this fact, at any point in a simulation
3All local permutations are implemented in look-up tables. All possible physical events

with a certain input configuration and a certain output configuration are precomputed and
stored in SRAM, for fast table look-up. The width of the CAM-8 look-up tables is 16-bits,
or 64K entries. This is a reasonable width satisfying the opposing considerations of model
complexity versus memory size limitations for the SRAM. Site permutations of data wider
than 16-bits must be implemented in several successive table look-up passes. Since the look-up
tables are double buffered, a scan of the space can be performed while a new look-up table is
loaded for the next scan.
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one can decide to reverse the computation: the state of the artificial microworld

evolves back to its initial state. Therefore the dynamics has a time-reversal

invariance, or in other words, the algorithm is logically invertible. Because

of algorithm reversibility, CAM-8 lattice gas simulations are unconditionally

stable, since transitions from one state to the next are unitary operations. Un-

conditional stability in a numerical treatment is a highly valuable and desirable

characteristic. Yet the CAM-8, which is a classical computer, is it not limited to

performing only unitary operations on its 16-bit cell (i.e. permutations), it can

do general mappings which are irreversible. Therefore, the CAM-8 dissipates

heat like any conventional computer, but an optimal lattice gas computer would

dissipate no heat as it processed through its simulation.
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Appendix B

Discrete Mathematics for
Lattice Calculations

B.1 Discrete Fourier Transform

Since a discrete Fourier transform is used in the course of the development in

the text of this dissertation, we review it in this appendix for completeness.

Consider a quantity A(~x) defined over the entire lattice. The discrete transform

and its inverse in one dimension are

A(kn) =
1√
V

∑
{xl}

eiknxlA(xl) (B.1)

A(xn) =
1√
V

∑
{kl}

e−iklxnA(kl). (B.2)

The possible k-vectors are kn = 2nπ/V l and the lattice vectors are xn = `n,

where n = 1, . . . , V and ` is the cell size. The generalization to D dimensions is

straightforward.

Inserting (B.2) into (B.1) gives

A(kn) =
1√
V

∑
{xl}

eiknxl


 1√

V

∑
{km}

e−ikmxlA(km)


 (B.3)
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=
∑
{km}

A(km)


 1
V

∑
{xl}

ei(kn−km)xl


 (B.4)

For the R.H.S. of this last expression to equal A(kn), the quantity in brackets

must be a Kronecker delta. Therefore, the resolution of the identity is

1
V

∑
{xl}

ei(kn−km)xl = δnm. (B.5)

Similarly, inserting (B.1) into (B.2) gives

A(xn) =
1√
V

∑
{kl}

e−iklxn


 1√

V

∑
{xm}

eiklxmA(xm)


 (B.6)

=
∑

{xm}
A(xm)


 1
V

∑
{kl}

eikl(xm−xn)


 . (B.7)

Again, for the R.H.S. of this last expression to equal A(xn), the quantity in

brackets must be a Kronecker delta. Therefore, the resolution of the identity is

1
V

∑
{kn}

eikn(xm−xn) = δmn. (B.8)

B.2 Integration by Parts on a Lattice

We will need the following theorem for the discrete analog of integration by

parts in calculus.

Theorem: Integration by Parts on a Lattice.

The sum over the product of two quantities where one of the quantities is dif-

ferentiated is equal to minus the sum over the product of the two quantities

where the derivative is exchanged to act on the other quantity, provided that the

192



product vanishes at the outer boundary of the lattice. That is,

∑
{~x}

∂u(~x)
∂xi

∣∣∣∣
~x on lattice

v(~x) = −
∑
{~x}

u(~x)
∂v(~x)
∂xi

∣∣∣∣
~x on lattice

. (B.9)

Proof:

The theorem follows directly from the theorem of integration by parts in calculus

by converting the sum into an integral according to the recipe (2.44) given above

∑
{~x}

∂(uv)
∂xi

∣∣∣∣
~x on lattice

=
[

1
`3

∫
dDx

∂(uv)
∂xi

]∣∣∣∣
~x on lattice

= 0. (B.10)

Note that the R.H.S is always equals zero because of periodic boundary condi-

tions,

uv|at periodic boundary = 0. (B.11)

Expanding the derivative of the product then gives

[
1
`3

∫
dDx

(
∂u

∂xi
v + u

∂v

∂xi

)]∣∣∣∣
~x on lattice

= 0. (B.12)

Finally, (2.44) is used again now to convert the integrals back to sums

→
∑
{~x}

[
∂u

∂xi

∣∣∣∣
~x on lattice

v(~x) + u(~x)
∂v

∂xi

∣∣∣∣
~x on lattice

]
= 0. (B.13)

This completes the proof. Q.E.D.

B.3 Discrete Green’s Function

Let us define a discrete Green’s function of Poisson’s equation, denoted g(~x, ~x′),

as follows

∂2g(~x, ~x′)
∂x2

i

= δxx′ , (B.14)
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where the Konecker delta, δxx′ , is one if x = x′ and zero otherwise. There is an

implied summation ∂2/∂x2
i = ∂2/∂x2

1 + · · · + ∂2/∂x2
D = ∇2. A useful reflection

symmetry of the Green function is

∂g(~x, ~x′)
∂xi

= −∂g(~x, ~x′)
∂x′

i

. (B.15)

Note that (B.15) is an expression of the fact that the Green function, which is

a scalar, depends only on the separation x− x′. Let us see why this is so.

Using (B.2) for the discrete inverse Fourier transform, write the discrete

Green function as

g(~x, ~x′) =
1√
V

∑
~k

e−i~k·(~x−~x′)g(~k). (B.16)

Inserting (B.16) into (B.14) gives

− 1√
V

∑
~k

k2e−i~k·(~x−~x′)g(~k) = δxx′ . (B.17)

Equating (B.17) with (B.8) implies that the discrete Green function must be of

the form (~k 6= ~0)

g(~k) = − 1
k2

√
V
. (B.18)

This is the Green function in k-space. Using (B.1), the Fourier transform of

(B.18) gives the desired result for the Green function in x-space

g(~x, ~x′) = − 1
V

∑
~k

e−iki(xi−x′
i)

k2 . (B.19)

We do indeed see that g(~x, ~x′) is only a function of the separation distance

between ~x and ~x′.
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Appendix C

The Parallel C-Star
Language on the CM-5: A
Network Communications
Test

A parallel version of the C-language developed by Thinking Machines Corpo-

ration is the C* language[86]. This is a well developed language in spirit very

close to its predecessor – it is as concise as the C-language itself. It offers many

useful constructs making the coding of algorithms for parallel data very effi-

cient. As typical of most parallel languages, an array operation is handled in a

single instruction — for the most part programming loops do not appear in the

code. Most parallel computation is achieved by data movement. The geometry

of the problem is specified at the onset by defining your the data structure’s

shape. This is usually a D-dimensional array with a certain size in each dimen-

sion. The shape definition defines all the needed communication topology for

the compiler. It is possible to declare boolean shapes in C*. We have used this
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feature to encode each bit plane of the lattice-gas. This is a convenient feature

of the language making efficient use of memory. Normally, in a lattice-gas code,

one must extract and insert individual bits at the lattice sites. The option of

working directly with boolean arrays has therefore simplified the coding effort

substantially. If individual elements of a parallel array must be accessed, C*

uses the syntax of parallel left indexing. Right indexing of arrays is reserved

for its usual C-language meaning. We use right indexed arrays to represent the

individual bit planes of the lattice gas.

An example of using a square shape with a lattice size of 1024 and using

right indexing for the 6 FHP bit planes is given in the following code fragment

#define LATTICE_SIZE 1024
#define PILE_SIZE 6

shape [LATTICE_SIZE][LATTICE_SIZE]Lattice ;

bool:Lattice lattice0 [PILE_SIZE], lattice1 [PILE_SIZE] ,
lattice_next0 [PILE_SIZE], lattice_next1 [PILE_SIZE] ;

We have implemented a two-dimensional hexagonal lattice embedded into a

three-dimensional mesh. This implementation is isomorphic to our implemen-

tion in CAMForth on the CAM-8 and GCC/DPEAC on the CM-5. Streaming

of pleat 0 and pleat 1 are coded separately. We give a C* code fragment for

this embedding. Note that the comments to the right of the lines correspond

exactly to the kick components listed in Table 3.1. The C* code for streaming

pleat 0 is the following

/* 0, 0, 1 */ lattice_next1 [0] = lattice0 [0] ;
/* 0,-1, 1 */ to_torus_dim ( &lattice_next1 [1] , lattice0 [1] , 1, -1 ) ;
/* 0,-1, 0 */ to_torus_dim ( &lattice_next0 [2] , lattice0 [2] , 1, -1 ) ;
/* 1,-1, 1 */ to_torus_dim ( &lattice0 [3] , lattice0 [3] , 0, 1 ) ;

to_torus_dim ( &lattice_next1 [3] , lattice0 [3] , 1, -1 ) ;
/* 1, 0, 1 */ to_torus_dim ( &lattice_next1 [4] , lattice0 [4] , 0, 1 ) ;
/* 0, 1, 0 */ to_torus_dim ( &lattice_next0 [5] , lattice0 [5] , 1, 1 ) ;
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and the likewise, the code for streaming pleat 1 is the following
/* -1, 1,-1 */ to_torus_dim ( &lattice1 [0] , lattice1 [0] , 0, -1 ) ;

to_torus_dim ( &lattice_next0 [0] , lattice1 [0] , 1, 1 ) ;
/* -1, 0,-1 */ to_torus_dim ( &lattice_next0 [1] , lattice1 [1] , 0, -1 ) ;
/* 0,-1, 0 */ to_torus_dim ( &lattice_next1 [2] , lattice1 [2] , 1, -1 ) ;
/* 0, 0,-1 */ lattice_next0 [3] = lattice1 [3] ;
/* 0, 1,-1 */ to_torus_dim ( &lattice_next0 [4] , lattice1 [4] , 1, 1 ) ;
/* 0, 1, 0 */ to_torus_dim ( &lattice_next1 [5] , lattice1 [5] , 1, 1 ) ;

With a few C* lines of code one can completely implement hexagonal lattice-

gas streaming. We have used the C* command to-torus-dim(destination pointer,

source, axis, distance) to shift the bit planes with toroidal boundary conditions.

This is an efficient communication routine for sending data in a regular fashion

using grid communications. The partitioning of the space between processors is

handled completely by the C* compiler. We will see how efficiently the compiler

does this partitioning in the discussion to follow.
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Figure C.1: Performance runs on a 256-node CM-5 for an FHP hexagonal lattice
embedded into a 3D mesh. Performance significantly suffers by communication
overhead for small lattice sizes.

We have tested our C* implementation for different situations. Given a

certain lattice size, for example 1024 × 2048, with have found the performance
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of the CM-5 to vary linearly with the number of processing nodes. This linear

variation is expected so long as the lattice size is sufficiently large. To determine

a reasonable lattice size, we have performed repeated simulations with different

lattice sizes but with a fixed number of processors. The results obtained for a

fixed 256-node partition of the CM-5 is given in figure C.1, in which we plotted

simulation site update rates for lattice sizes 64 × 128, 128 × 256, . . . , 8192 ×

16384. For small lattice sizes, the performance is very poor, on the order of a

million site updates per seconds. This is because the streaming is limited by

processor to processor communication bandwidth. As the lattice size increases,

the number of sites interior to the node grows and the number of sites on the

partition boundary deceases. Consequently, the site update rate continuously

improves with larger lattices. The update rate asymptotically approaches about

25 million site updates per second. This is equivalent to approximately 100,000

site updates per processing node. This is roughly the maximum update rate

achievable on a SPARCstation 1. A full 512-node partition has a peak rate of

about 50 million site updates per second, which is about one quarter the speed

of the CAM-8.
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Appendix D

Mach Number Expansion of
the Fermi-Dirac
Distribution Function

D.1 Expanding the Single-Speed Fermi-Dirac Dis-
tribution Function

We begin with the most general form of the single particle distribution function,

appropriate for single speed lattice gases: the Fermi-Dirac distribution. Write

the distribution as a function of the sum of scalar collision invariants, α+βeaivi,

as follows

fa =
1

1 + eα+βeaivi
. (D.1)

Expand the α and β as follows

α = α0 +
1
2
α2v

2 + O(v4) (D.2)

β = β1 +
1
2
β3v

2 + O(v4). (D.3)
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A Taylor expansion to fourth order in vi of (D.1) about zero velocity is the

following

fa = d (D.4)

−d(1 − d)β1eai
vi

c

−1
2
d(1 − d)α2

v2

c2

+
1
2
d(1 − d)(1 − 2d)β2

1eaieaj
vivj

c2

−1
2
d(1 − d)β3eai

viv
2

c3

+
1
2
d(1 − d)(1 − 2d)β1α2eai

viv
2

c3

−1
6
d(1 − d)(1 − 6d+ 6d2)β3

1eaieajeak
vivjvk

c3

+O(v4)

where d = fa |v=0. The coefficients can be determined by taking the first three

moments of the distribution function and equating them to the particle number

density (m
∑

a fa = ρ), the momentum density (mc
∑

a eaifa = ρvi) and the

moment density flux tensor (mc2
∑

a eaieajfa = Πij). The zeroth moment of

(D.4) is

1
B

∑
a

fa = d− 1
2
d(1 − d)α2

v2

c2
+

1
2D

d(1 − d)(1 − 2d)β2
1
v2

c2
= d (D.5)

−→ α2 =
(1 − 2d)β2

1

D
(D.6)

The first moment of (D.4) is

1
B

∑
a

eaifa = − 1
D
d(1 − d)β1

vi

c
(D.7)

+d(1 − d)
viv

2

c3

[
− 1

2Dc2
β3 +

1
2D

(1 − 2d)β1α2 − 3
2D(D + 2)

(1 − 6d+ 6d2)β3
1

]
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= d
vi

c
. (D.8)

This implies the following

β1 = − D

1 − d
(D.9)

α2 =
D(1 − 2d)
(1 − d)2

. (D.10)

Substituting these last two expressions into (D.4), causes the ideal part of the

lattice gas distribution function to become

(fa
eq)ideal

LGA =
n

B
+
nD

cB
eaivi + g

nD(D + 2)
2c2B

êaiêajvivj − g
n(D + 2)

2c2B
v2, (D.11)

where

g ≡ D

D + 2
1 − 2d
1 − d

. (D.12)

The second moment of (D.4) is

1
B

∑
a

eaieajfa
eq =

∑
a

eaieajd

[
1 − g

2
(D + 2)

v2

c2
+
g

2
D(D + 2)eakeal

vkvl

c2

]

=
d

D
(1 − g

v2

c2
)δij − gdvivj . (D.13)

To summarize, using ρ = mn for the density and cs = c√
D

for the sound speed,

the following hold true

m
∑

a

(fa
eq)ideal = ρ (D.14)

mc
∑

a

eai (fa
eq)ideal = ρvi (D.15)

mc2
∑

a

eaieaj (fa
eq)ideal = ρc2s(1 − g

v2

c2
)δij + gρvivj (D.16)
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D.2 Single Particle Distribution Function from
Symmetry

Begin by expanding the momentum flux density tensor to all the possible prod-

ucts involving the E(n) tensors that contract to a second rank tensor

Πij = mc2d

(
Eij +

ε(1)

c
Eijkvk +

ε
(2)
1

c2
Eijklvkvl +

ε
(2)
2

c2
Eijvkvk − λ

(2)
1

c
Eijkl∂kvl − λ

(2)
2

c
Eij∂kvk

)
,

(D.17)

where the superscripts on the constants ε and λ denote the order of the particular

terms. We will see that the tensor expansion (D.17) to fourth-rank in E is

sufficient to give the full Navier-Stokes equation. Fix two constants of (D.17)

by looking at the trace of the momentum flux tensor which, by (2.105), is

proportional to the particle mass density

Πii = mc2
∑

a

fa = ρc2 (D.18)

or since by definition ρ = mn reduces to

n = d

(
Eii +

ε(1)

c
Eiikvk +

ε
(2)
1

c2
Eiiklvkvl +

ε
(2)
2

c2
Eiivkvk − λ

(2)
1

c
Eiikl∂kvl − λ

(2)
2

c
Eii∂kvk

)
.

(D.19)

Using (2.19) and (2.20), then (D.19) becomes

n = d

[
B +

(
ε
(2)
1

c2
B

D
+B

ε
(2)
2

c2

)
vkvk −

(
λ

(2)
1

c

B

D
+B

λ
(2)
2

c

)
∂kvk

]
. (D.20)

The last two terms must vanish. This implies the following constraint on the

constant coefficients

d =
n

B
(D.21)
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ε
(2)
2 = −ε

(2)
1

D
(D.22)

λ
(2)
2 = −λ

(2)
1

D
. (D.23)

Call d the reduced density. The form of (D.17) then simplifies to

Πij =
ρc2

B

[
Eij +

ε(1)

c
Eijkvk +

ε(2)

c2

(
Eijklvkvl − 1

D
Eijvkvk

)
− λ(2)

c

(
Eijkl∂kvl − 1

D
Eij∂kvk

)]
.

(D.24)

Since Πij = mc2
∑

a eaieajfa, it immediately follows from (D.24) how to write

the equivalent expansion for the single particle distribution function fa

fa =
n

B

[
1 +

ε(1)

c
eakvk +

ε(2)

c2

(
eakealvkvl − 1

D
vkvk

)
− λ(2)

c

(
eakeal∂kvl − 1

D
∂kvk

)]
.

(D.25)

It is possible to determine the value of the constant ε(1) by multiplying (D.25)

by êa, summing over lattice directions a, and equating the result to (2.106)

(
∑

a eaifa = n vi

c )

∑
a

eaifa =
n

B

ε(1)

c

∑
a

eaieakvk =
nε(1)

Dc
vi, (D.26)

which implies that ε(1) = D. Using (2.19) and (2.20), multiplying (D.25) by

eaieaj , and summing over lattice directions a, then (D.25) gives us the following

∑
a

eaieajfa =
n

B
{B

D
δij +

ε(2)

c2

[
B

D(D + 2)
(δijδkl + δikδjl + δilδkj) vkvl − B

D2 δijvkvk

]
−

λ(2)

c

[
B

D(D + 2)
(δijδkl + δikδjl + δilδkj) ∂kvl − B

D2 δij∂kvk

]}
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or

∑
a

eaieajfa =
n

D
δij+

2nε(2)

D(D + 2)c2

[
vivj − 1

D
δijv

2
]
+

2nλ(2)

D(D + 2)c

[
1
2

(∂ivj + ∂jvi) − 1
D
δij∂kvk

]
.

(D.27)

The value of the constant ε(2) is determined by equating this result for

∑
a eaieajfa to (2.117). In the incompressible fluid limit, the divergence of

the velocity field vanishes; ∂kvk = 0. Therefore fix the constant coefficient

ε(2) = 1
2D(D + 2) to write the shear viscosity as

η =
ρλ(2)c

D(D + 2)
. (D.28)

The expansion for fa, (D.25), becomes

fa =
n

B
+
nD

cB
eakvk +

nD(D + 2)
2c2B

(
eakealvkvl − 1

D
vkvk

)
− nλ(2)

cB
eakeal∂kvl.

(D.29)

Therefore, the ideal part of (D.29) is

(fa
eq)ideal =

n

B
+
nD

cB
eaivi +

nD(D + 2)
2c2B

êaiêajvivj − n(D + 2)
2c2B

v2 (D.30)

and in summary using ρ = mn for the density and cs = c√
D

for the sound speed

this satisfies

m
∑

a

(fa
eq)ideal = ρ (D.31)

mc
∑

a

eai (fa
eq)ideal = ρvi (D.32)

mc2
∑

a

eaieaj (fa
eq)ideal = ρc2s

(
1 − v2

c2

)
δij + ρvivj . (D.33)

We can identify the pressure

p = ρc2s

(
1 − v2

c2

)
. (D.34)
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It appears to have a spurious dependence on the square of the velocity field,

(1− v2

c2 ), as did the pressure in the lattice gas calculation in the previous section.

Here the factor g does not appear since the particle distribution function is

Boltzmann distributed. It is possible to fix this anomaly in the fluid pressure

at the expense of redefining the density. Chen et al. [22] have introduced

a pressure-corrected equilibrium distribution to have the following Chapman-

Enskog expansion

(fa
eq)ideal

PC =
n

B
+
nD

cB
eaivi +

nD(D + 2)
2c2B

êaiêajvivj − nD

2c2B
v2 (D.35)

which satisfies

m
∑

a

(fa
eq)ideal

PC = ρ(1 − v2

c2
) (D.36)

mc
∑

a

eai (fa
eq)ideal

PC = ρvi (D.37)

mc2
∑

a

eaieaj (fa
eq)ideal

PC = ρc2sδij + ρvivj . (D.38)

Here the definition of the density is modified by the 1− v2

c2 factor. By this point

all the constant coefficients of the expansion (D.17) are determined except for

the coefficient λ(2).
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Appendix E

Integer Lattice Gas
Implementation

The full set of equivalence classes modulo the triangular lattice isometries and

particle-hole symmetry for the L = 2 integer lattice gas with D = 2 and B =

6 is listed below. Note that the first two equivalence classes have zero total

momentum, for two and three particles respectively, and have only one particle

per site. These are the equivalence classes for the FHP L = 1 lattice gas [41],

which therefore is clearly a subset of the L = 2 integer lattice gas. The format

for this table is given in §6.1.

{3, 2, 0, 0, {0, 0, 1, 0, 0, 1}, {0, 1, 0, 0, 1, 0}, {1, 0, 0, 1, 0, 0}},
{2, 3, 0, 0, {0, 1, 0, 1, 0, 1}, {1, 0, 1, 0, 1, 0}},
{3, 3, 2, 0, {0, 0, 1, 0, 0, 2}, {0, 1, 0, 0, 1, 1}, {1, 0, 0, 1, 0, 1}},
{2, 3, 3, 1, {0, 1, 0, 0, 0, 2}, {2, 0, 0, 0, 1, 0}},
{6, 4, 0, 0, {0, 0, 2, 0, 0, 2}, {0, 1, 1, 0, 1, 1}, {0, 2, 0, 0, 2, 0},
{1, 0, 1, 1, 0, 1}, {1, 1, 0, 1, 1, 0}, {2, 0, 0, 2, 0, 0}},
{4, 4, 2, 0, {0, 1, 0, 1, 0, 2}, {1, 0, 1, 0, 1, 1},
{1, 1, 0, 0, 2, 0}, {2, 0, 0, 1, 1, 0}},

{3, 4, 3, 1, {1, 0, 1, 0, 0, 2}, {1, 1, 0, 0, 1, 1}, {2, 0, 0, 1, 0, 1}},
{4, 4, 4, 0, {0, 0, 1, 0, 0, 3}, {0, 1, 0, 0, 1, 2},
{1, 0, 0, 1, 0, 2}, {2, 0, 0, 0, 2, 0}},

{2, 4, 4, 2, {1, 1, 0, 0, 0, 2}, {3, 0, 0, 0, 1, 0}},
{2, 4, 5, 1, {0, 1, 0, 0, 0, 3}, {2, 0, 0, 0, 1, 1}},
{6, 5, 0, 0, {0, 1, 1, 1, 0, 2}, {0, 2, 0, 1, 1, 1}, {1, 0, 2, 0, 1, 1},
{1, 1, 0, 2, 0, 1}, {1, 1, 1, 0, 2, 0}, {2, 0, 1, 1, 1, 0}},

{7, 5, 2, 0, {0, 0, 2, 0, 0, 3}, {0, 1, 1, 0, 1, 2},
{0, 2, 0, 0, 2, 1}, {1, 0, 1, 1, 0, 2}, {1, 1, 0, 1, 1, 1},
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{2, 0, 0, 2, 0, 1}, {2, 0, 1, 0, 2, 0}},
{6, 5, 3, 1, {0, 1, 1, 0, 0, 3}, {0, 2, 0, 0, 1, 2}, {1, 1, 0, 1, 0, 2},
{2, 0, 1, 0, 1, 1}, {2, 1, 0, 0, 2, 0}, {3, 0, 0, 1, 1, 0}},

{4, 5, 4, 0, {0, 1, 0, 1, 0, 3}, {1, 0, 1, 0, 1, 2}, {1, 1, 0, 0, 2, 1},
{2, 0, 0, 1, 1, 1}},

{4, 5, 4, 2, {0, 2, 0, 0, 0, 3}, {2, 0, 1, 0, 0, 2},
{2, 1, 0, 0, 1, 1}, {3, 0, 0, 1, 0, 1}},

{4, 5, 5, 1, {1, 0, 1, 0, 0, 3}, {1, 1, 0, 0, 1, 2}, {2, 0, 0, 1, 0, 2},
{3, 0, 0, 0, 2, 0}},

{3, 5, 6, 0, {0, 1, 0, 0, 1, 3}, {1, 0, 0, 1, 0, 3}, {2, 0, 0, 0, 2, 1}},
{2, 5, 6, 2, {1, 1, 0, 0, 0, 3}, {3, 0, 0, 0, 1, 1}},
{12, 6, 0, 0, {0, 0, 3, 0, 0, 3}, {0, 1, 2, 0, 1, 2}, {0, 2, 0, 2, 0, 2},
{0, 2, 1, 0, 2, 1}, {0, 3, 0, 0, 3, 0}, {1, 0, 2, 1, 0, 2},
{1, 1, 1, 1, 1, 1}, {1, 2, 0, 1, 2, 0}, {2, 0, 1, 2, 0, 1},
{2, 0, 2, 0, 2, 0}, {2, 1, 0, 2, 1, 0}, {3, 0, 0, 3, 0, 0}},
{9, 6, 2, 0, {0, 1, 1, 1, 0, 3}, {0, 2, 0, 1, 1, 2}, {1, 0, 2, 0, 1, 2},
{1, 1, 0, 2, 0, 2}, {1, 1, 1, 0, 2, 1}, {1, 2, 0, 0, 3, 0},
{2, 0, 1, 1, 1, 1}, {2, 1, 0, 1, 2, 0}, {3, 0, 0, 2, 1, 0}},
{8, 6, 3, 1, {0, 2, 0, 1, 0, 3}, {1, 0, 2, 0, 0, 3}, {1, 1, 1, 0, 1, 2},
{1, 2, 0, 0, 2, 1}, {2, 0, 1, 1, 0, 2}, {2, 1, 0, 1, 1, 1},
{3, 0, 0, 2, 0, 1}, {3, 0, 1, 0, 2, 0}},
{8, 6, 4, 0, {0, 1, 1, 0, 1, 3}, {0, 2, 0, 0, 2, 2}, {1, 0, 1, 1, 0, 3},
{1, 1, 0, 1, 1, 2}, {2, 0, 0, 2, 0, 2}, {2, 0, 1, 0, 2, 1},
{2, 1, 0, 0, 3, 0}, {3, 0, 0, 1, 2, 0}},

{5, 6, 4, 2, {1, 1, 1, 0, 0, 3}, {1, 2, 0, 0, 1, 2}, {2, 1, 0, 1, 0, 2},
{3, 0, 1, 0, 1, 1}, {3, 1, 0, 0, 2, 0}},

{5, 6, 5, 1, {0, 2, 0, 0, 1, 3}, {1, 1, 0, 1, 0, 3}, {2, 0, 1, 0, 1, 2},
{2, 1, 0, 0, 2, 1}, {3, 0, 0, 1, 1, 1}},

{3, 6, 5, 3, {1, 2, 0, 0, 0, 3}, {3, 0, 1, 0, 0, 2}, {3, 1, 0, 0, 1, 1}},
{4, 6, 6, 0, {1, 0, 1, 0, 1, 3}, {1, 1, 0, 0, 2, 2}, {2, 0, 0, 1, 1, 2},
{3, 0, 0, 0, 3, 0}},

{3, 6, 6, 2, {2, 0, 1, 0, 0, 3}, {2, 1, 0, 0, 1, 2}, {3, 0, 0, 1, 0, 2}},
{3, 6, 7, 1, {1, 1, 0, 0, 1, 3}, {2, 0, 0, 1, 0, 3}, {3, 0, 0, 0, 2, 1}},
{12, 7, 0, 0, {0, 1, 2, 1, 0, 3}, {0, 2, 1, 1, 1, 2}, {0, 3, 0, 1, 2, 1},
{1, 0, 3, 0, 1, 2}, {1, 1, 1, 2, 0, 2}, {1, 1, 2, 0, 2, 1},
{1, 2, 0, 2, 1, 1}, {1, 2, 1, 0, 3, 0}, {2, 0, 2, 1, 1, 1},
{2, 1, 0, 3, 0, 1}, {2, 1, 1, 1, 2, 0}, {3, 0, 1, 2, 1, 0}},
{13, 7, 2, 0, {0, 1, 2, 0, 1, 3}, {0, 2, 0, 2, 0, 3}, {0, 2, 1, 0, 2, 2},
{0, 3, 0, 0, 3, 1}, {1, 1, 1, 1, 1, 2}, {1, 2, 0, 1, 2, 1},
{2, 0, 1, 2, 0, 2}, {2, 0, 2, 0, 2, 1}, {2, 1, 0, 2, 1, 1},
{2, 1, 1, 0, 3, 0}, {3, 0, 0, 3, 0, 1}, {3, 0, 1, 1, 2, 0},
{1, 0, 2, 1, 0, 3}},

{10, 7, 3, 1, {0, 2, 1, 0, 1, 3},
{0, 3, 0, 0, 2, 2}, {1, 1, 1, 1, 0, 3}, {1, 2, 0, 1, 1, 2},
{2, 0, 2, 0, 1, 2}, {2, 1, 0, 2, 0, 2}, {2, 1, 1, 0, 2, 1},
{2, 2, 0, 0, 3, 0}, {3, 0, 1, 1, 1, 1}, {3, 1, 0, 1, 2, 0}},

{9, 7, 4, 0, {0, 2, 0, 1, 1, 3}, {1, 0, 2, 0, 1, 3}, {1, 1, 0, 2, 0, 3},
{1, 1, 1, 0, 2, 2}, {1, 2, 0, 0, 3, 1}, {2, 0, 1, 1, 1, 2},
{2, 1, 0, 1, 2, 1}, {3, 0, 0, 2, 1, 1}, {3, 0, 1, 0, 3, 0}},

{7, 7, 4, 2, {0, 3, 0, 0, 1, 3}, {1, 2, 0, 1, 0, 3}, {2, 0, 2, 0, 0, 3},
{2, 1, 1, 0, 1, 2}, {2, 2, 0, 0, 2, 1}, {3, 0, 1, 1, 0, 2},
{3, 1, 0, 1, 1, 1}},

{7, 7, 5, 1, {1, 1, 1, 0, 1, 3}, {1, 2, 0, 0, 2, 2}, {2, 0, 1, 1, 0, 3},
{2, 1, 0, 1, 1, 2}, {3, 0, 0, 2, 0, 2}, {3, 0, 1, 0, 2, 1},
{3, 1, 0, 0, 3, 0}},
{3, 7, 5, 3, {2, 1, 1, 0, 0, 3}, {2, 2, 0, 0, 1, 2}, {3, 1, 0, 1, 0, 2}},
{6, 7, 6, 0, {0, 2, 0, 0, 2, 3}, {1, 1, 0, 1, 1, 3}, {2, 0, 0, 2, 0, 3},
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{2, 0, 1, 0, 2, 2}, {2, 1, 0, 0, 3, 1}, {3, 0, 0, 1, 2, 1}},
{4, 7, 6, 2, {1, 2, 0, 0, 1, 3}, {2, 1, 0, 1, 0, 3}, {3, 0, 1, 0, 1, 2},
{3, 1, 0, 0, 2, 1}},

{3, 7, 7, 1, {2, 0, 1, 0, 1, 3}, {2, 1, 0, 0, 2, 2}, {3, 0, 0, 1, 1, 2}},
{2, 7, 7, 3, {3, 0, 1, 0, 0, 3}, {3, 1, 0, 0, 1, 2}},
{3, 7, 8, 0, {1, 1, 0, 0, 2, 3}, {2, 0, 0, 1, 1, 3}, {3, 0, 0, 0, 3, 1}},
{2, 7, 8, 2, {2, 1, 0, 0, 1, 3}, {3, 0, 0, 1, 0, 3}},
{18, 8, 0, 0, {0, 1, 3, 0, 1, 3}, {0, 2, 1, 2, 0, 3}, {0, 2, 2, 0, 2, 2},
{0, 3, 0, 2, 1, 2}, {0, 3, 1, 0, 3, 1}, {1, 0, 3, 1, 0, 3},
{1, 1, 2, 1, 1, 2}, {1, 2, 0, 3, 0, 2}, {1, 2, 1, 1, 2, 1},
{1, 3, 0, 1, 3, 0}, {2, 0, 2, 2, 0, 2}, {2, 0, 3, 0, 2, 1},
{2, 1, 1, 2, 1, 1}, {2, 1, 2, 0, 3, 0}, {2, 2, 0, 2, 2, 0},
{3, 0, 1, 3, 0, 1}, {3, 0, 2, 1, 2, 0}, {3, 1, 0, 3, 1, 0}},

{14, 8, 2, 0, {0, 2, 1, 1, 1, 3}, {0, 3, 0, 1, 2, 2}, {1, 0, 3, 0, 1, 3},
{1, 1, 1, 2, 0, 3}, {1, 1, 2, 0, 2, 2}, {1, 2, 0, 2, 1, 2},
{1, 2, 1, 0, 3, 1}, {2, 0, 2, 1, 1, 2}, {2, 1, 0, 3, 0, 2},
{2, 1, 1, 1, 2, 1}, {2, 2, 0, 1, 3, 0}, {3, 0, 1, 2, 1, 1},
{3, 0, 2, 0, 3, 0}, {3, 1, 0, 2, 2, 0}},

{12, 8, 3, 1, {0, 3, 0, 1, 1, 3}, {1, 1, 2, 0, 1, 3}, {1, 2, 0, 2, 0, 3},
{1, 2, 1, 0, 2, 2}, {1, 3, 0, 0, 3, 1}, {2, 0, 2, 1, 0, 3},
{2, 1, 1, 1, 1, 2}, {2, 2, 0, 1, 2, 1}, {3, 0, 1, 2, 0, 2},
{3, 0, 2, 0, 2, 1}, {3, 1, 0, 2, 1, 1}, {3, 1, 1, 0, 3, 0}},

{11, 8, 4, 0, {0, 2, 1, 0, 2, 3}, {0, 3, 0, 0, 3, 2}, {1, 1, 1, 1, 1, 3},
{1, 2, 0, 1, 2, 2}, {2, 0, 1, 2, 0, 3}, {2, 0, 2, 0, 2, 2},
{2, 1, 0, 2, 1, 2}, {2, 1, 1, 0, 3, 1}, {3, 0, 0, 3, 0, 2},
{3, 0, 1, 1, 2, 1}, {3, 1, 0, 1, 3, 0}},

{8, 8, 4, 2, {1, 2, 1, 0, 1, 3}, {1, 3, 0, 0, 2, 2}, {2, 1, 1, 1, 0, 3},
{2, 2, 0, 1, 1, 2}, {3, 0, 2, 0, 1, 2}, {3, 1, 0, 2, 0, 2},
{3, 1, 1, 0, 2, 1}, {3, 2, 0, 0, 3, 0}},

{8, 8, 5, 1, {0, 3, 0, 0, 2, 3}, {1, 2, 0, 1, 1, 3}, {2, 0, 2, 0, 1, 3},
{2, 1, 0, 2, 0, 3}, {2, 1, 1, 0, 2, 2}, {2, 2, 0, 0, 3, 1},
{3, 0, 1, 1, 1, 2}, {3, 1, 0, 1, 2, 1}},

{5, 8, 5, 3, {1, 3, 0, 0, 1, 3}, {2, 2, 0, 1, 0, 3}, {3, 0, 2, 0, 0, 3},
{3, 1, 1, 0, 1, 2}, {3, 2, 0, 0, 2, 1}},

{6, 8, 6, 0, {1, 1, 1, 0, 2, 3}, {1, 2, 0, 0, 3, 2}, {2, 0, 1, 1, 1, 3},
{2, 1, 0, 1, 2, 2}, {3, 0, 0, 2, 1, 2}, {3, 0, 1, 0, 3, 1}},

{4, 8, 6, 2, {2, 1, 1, 0, 1, 3}, {2, 2, 0, 0, 2, 2}, {3, 0, 1, 1, 0, 3},
{3, 1, 0, 1, 1, 2}},

{2, 8, 6, 4, {3, 1, 1, 0, 0, 3}, {3, 2, 0, 0, 1, 2}},
{5, 8, 7, 1, {1, 2, 0, 0, 2, 3}, {2, 1, 0, 1, 1, 3}, {3, 0, 0, 2, 0, 3},
{3, 0, 1, 0, 2, 2}, {3, 1, 0, 0, 3, 1}},

{2, 8, 7, 3, {2, 2, 0, 0, 1, 3}, {3, 1, 0, 1, 0, 3}},
{3, 8, 8, 0, {2, 0, 1, 0, 2, 3}, {2, 1, 0, 0, 3, 2}, {3, 0, 0, 1, 2, 2}},
{2, 8, 8, 2, {3, 0, 1, 0, 1, 3}, {3, 1, 0, 0, 2, 2}},
{2, 8, 9, 1, {2, 1, 0, 0, 2, 3}, {3, 0, 0, 1, 1, 3}},
{16, 9, 0, 0, {0, 2, 2, 1, 1, 3}, {0, 3, 0, 3, 0, 3}, {0, 3, 1, 1, 2, 2},
{1, 1, 2, 2, 0, 3}, {1, 1, 3, 0, 2, 2}, {1, 2, 1, 2, 1, 2},
{1, 2, 2, 0, 3, 1}, {1, 3, 0, 2, 2, 1}, {2, 0, 3, 1, 1, 2},
{2, 1, 1, 3, 0, 2}, {2, 1, 2, 1, 2, 1}, {2, 2, 0, 3, 1, 1},
{2, 2, 1, 1, 3, 0}, {3, 0, 2, 2, 1, 1}, {3, 0, 3, 0, 3, 0},
{3, 1, 1, 2, 2, 0}},

{16, 9, 2, 0, {0, 2, 2, 0, 2, 3},
{0, 3, 0, 2, 1, 3}, {0, 3, 1, 0, 3, 2}, {1, 1, 2, 1, 1, 3},
{1, 2, 0, 3, 0, 3}, {1, 2, 1, 1, 2, 2}, {1, 3, 0, 1, 3, 1},
{2, 0, 2, 2, 0, 3}, {2, 0, 3, 0, 2, 2}, {2, 1, 1, 2, 1, 2},
{2, 1, 2, 0, 3, 1}, {2, 2, 0, 2, 2, 1}, {3, 0, 1, 3, 0, 2},
{3, 0, 2, 1, 2, 1}, {3, 1, 0, 3, 1, 1}, {3, 1, 1, 1, 3, 0}},
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{12, 9, 3, 1, {0, 3, 1, 0, 2, 3}, {1, 2, 1, 1, 1, 3}, {1, 3, 0, 1, 2, 2},
{2, 0, 3, 0, 1, 3}, {2, 1, 1, 2, 0, 3}, {2, 1, 2, 0, 2, 2},
{2, 2, 0, 2, 1, 2}, {2, 2, 1, 0, 3, 1}, {3, 0, 2, 1, 1, 2},
{3, 1, 0, 3, 0, 2}, {3, 1, 1, 1, 2, 1}, {3, 2, 0, 1, 3, 0}},

{11, 9, 4, 0, {0, 3, 0, 1, 2, 3}, {1, 1, 2, 0, 2, 3}, {1, 2, 0, 2, 1, 3},
{1, 2, 1, 0, 3, 2}, {2, 0, 2, 1, 1, 3}, {2, 1, 0, 3, 0, 3},
{2, 1, 1, 1, 2, 2}, {2, 2, 0, 1, 3, 1}, {3, 0, 1, 2, 1, 2},
{3, 0, 2, 0, 3, 1}, {3, 1, 0, 2, 2, 1}},

{8, 9, 4, 2, {1, 3, 0, 1, 1, 3}, {2, 1, 2, 0, 1, 3}, {2, 2, 0, 2, 0, 3},
{2, 2, 1, 0, 2, 2}, {2, 3, 0, 0, 3, 1}, {3, 0, 2, 1, 0, 3},
{3, 1, 1, 1, 1, 2}, {3, 2, 0, 1, 2, 1}},

{8, 9, 5, 1, {1, 2, 1, 0, 2, 3}, {1, 3, 0, 0, 3, 2}, {2, 1, 1, 1, 1, 3},
{2, 2, 0, 1, 2, 2}, {3, 0, 1, 2, 0, 3}, {3, 0, 2, 0, 2, 2},
{3, 1, 0, 2, 1, 2}, {3, 1, 1, 0, 3, 1}},

{4, 9, 5, 3, {2, 2, 1, 0, 1, 3}, {2, 3, 0, 0, 2, 2}, {3, 1, 1, 1, 0, 3},
{3, 2, 0, 1, 1, 2}},

{8, 9, 6, 0, {0, 3, 0, 0, 3, 3}, {1, 2, 0, 1, 2, 3},
{2, 0, 2, 0, 2, 3}, {2, 1, 0, 2, 1, 3}, {2, 1, 1, 0, 3, 2},
{3, 0, 0, 3, 0, 3}, {3, 0, 1, 1, 2, 2}, {3, 1, 0, 1, 3, 1}},

{6, 9, 6, 2, {1, 3, 0, 0, 2, 3}, {2, 2, 0, 1, 1, 3}, {3, 0, 2, 0, 1, 3},
{3, 1, 0, 2, 0, 3}, {3, 1, 1, 0, 2, 2}, {3, 2, 0, 0, 3, 1}},

{2, 9, 6, 4, {2, 3, 0, 0, 1, 3}, {3, 2, 0, 1, 0, 3}},
{4, 9, 7, 1, {2, 1, 1, 0, 2, 3}, {2, 2, 0, 0, 3, 2}, {3, 0, 1, 1, 1, 3},
{3, 1, 0, 1, 2, 2}},

{2, 9, 7, 3, {3, 1, 1, 0, 1, 3}, {3, 2, 0, 0, 2, 2}},
{4, 9, 8, 0, {1, 2, 0, 0, 3, 3}, {2, 1, 0, 1, 2, 3}, {3, 0, 0, 2, 1, 3},
{3, 0, 1, 0, 3, 2}},

{2, 9, 8, 2, {2, 2, 0, 0, 2, 3}, {3, 1, 0, 1, 1, 3}},
{2, 9, 9, 1, {3, 0, 1, 0, 2, 3}, {3, 1, 0, 0, 3, 2}},
{2, 9, 10, 0, {2, 1, 0, 0, 3, 3}, {3, 0, 0, 1, 2, 3}}
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A simple, albeit memory intensive, algorithm that I have employed to imple-

ment L = 2, L = 3, and L = 4 integer lattice gases uses a table lookup approach,

similar to that employed in the well known L = 1 case. For L > 1 however,

more than a single lookup table is required. The algorithm presented here offers

two advantages: it is quite simple, and it provides statistically detailed balance

in a straightforward fashion.

The first step is to generate a binary sequence of integers from 0 to 2BL;

this is the first table, termed the configuration table.1 For each entry in the

configuration table an equivalence class tag is then computed. The equivalence

class tag, denoted IEC, is an integer that encodes the configuration’s mass and

momentum. For the example of the L = 2 integer lattice gas given above, where

B = 6 and D = 2, the equivalance class tag may be defined as

IEC ≡ A m+B (2px) + C

(√
3

2
py

)
, (E.1)

where the constant coefficients A, B, and C are chosen so that IEC is always

a positive integer. The second step is to use (E.1) to generate a second table,

termed the tag table that corresponds one-to-one with the configuration table.

Note that the tag table will have many duplicate tags since several configurations

can have the same tag. In fact, grouping all the common tags together is the

way to find all the configurations that are members of an equivalence class.
1Note that for B = 6 and L = 4, the total amount of memory needed to sort a single

table is 3 × 224 bytes, or 48 megabytes. Therefore, since several tables are required in this
algorithm, it is not possible on current day supercomputers to simulate integer lattice gases
with L > 4. To overcome this deficiency, a polytope sampling algorithm was developed that
trades off memory for time [16]. Since computational time is crucial for numerical efficiency,
the polytope sampling method has not been competitive for smaller values of L but is necessary
for large L.
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The tag table just described is then sorted. In the C language this can be

easily done by a calling a quick sort routine. The configuration table must be

sorted along the way as the tag table is sorted to keep all the tags and configura-

tions in one-to-one correspondence. At this point, all the configurations are now

ordered in equivalence class groupings so that each entry in the configuration

table is now juxaposed to entries in the same equivalence class. Another table

is needed to continue the algorithm construction.

The third step is to count the number of similar equivalence tags and to

generate a table that gives for each entry in the configuration table the size

of the equivalence class that contains that entry. This table is termed the

size table. With a counter initially set to zero, the size table is generated by

sequentially scanning through the tag table and incrementing the counter each

time a duplicate tag is found. When a new tag is encountered, this indicates

the end of an equivalence class has been reached, so the contents of the counter

is just the size of the previous equivalence class, NEC. Before the counter is

zeroed out to begin counting the size of the next equivalence class, its value is

repeatedly back copied NEC-times into the size table so that there is a one-to-one

correspondence to each entry of the configuration table.

Finally, the tag table is regenerated; it is in unsorted fashion again so that

it can serve as the main lookup table of the lattice gas simulation. Each tag is

replaced with the address of the first entry of the equivalence class with which

this tag is associated. The tag table is now a pointer table and can be used for

table lookup purposes.
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The configuration table, the size table, and the pointer table are computed

before the integer lattice gas simulation begins and need be computed only a

single time; therefore, they impose no computational overhead.

A collision takes place as follows. The incoming site data, s, is used as an

address into the pointer table. The outgoing site data, s′, now points to the

first element in its equivalence class in the configuration table, sbase,

s′ = sbase. (E.2)

Then s is also used to address the size table so that the size of the equivalence

class containing this configuration can be fetched, NEC(s). A large random num-

ber, denoted R, is generated and then taken modulo the size of the equivalence

class to obtain a small random number, denoted r,

r = (R modNEC(s)). (E.3)

Note that 0 ≤ r ≤ NEC(s) − 1. The final outgoing site data, s′, is then easily

computed by using r as a memory offset from the base address

s′ = sbase + r. (E.4)

In this way, integer lattice gases for L ≤ 4 can be efficiently simulated on a

computer by table lookup.

212



Appendix F

Counting States in
Quantum Mechanics

In quantum mechanics, in the canonical ensemble the partition function is

Q =
∑

j

exp
(

−Ej

kT

)
, (F.1)

where j sums over all accessible energy states. Denoting the energy eigenstates

by ψj(x) in the position representations, the Schrödinger eigenequation is

Ĥψj(x) = Ejψj(x). (F.2)

The energy eigenfunctions are orthonormalized so

∫
dxψ∗

i (x)ψj(x) = δij . (F.3)

Then the canonical partition function can be rewritten by inserting one into the

integrand

Q =
∑

j

exp
(

− Ei

kT

)∫
dxψ∗

j (x)ψj(x) (F.4)

=
∑

j

∫
dxψ∗

j (x) exp

(
− Ĥ

kT

)
ψj(x) (F.5)
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Now we would like to convert the sum over energy levels into a sum over mo-

mentum states (actually into an integration over momentum states since we are

considering motion in a continuum). To this end, consider the complete set of

orthonormal momentum eigenfunctions

ϕ(x, p) =
1

h
3N
2

exp
(
2πi

px

h

)
. (F.6)

The energy eigenfunctions can be expressed as a linear combination of the mo-

mentum eigenfunctions as follows

ψj(x) =
1

h
3N
2

∫
dpAj(p) exp

(
2πi

px

h

)
. (F.7)

Note that the orthonormality condition on the energy eigenfunctions implies

that the coefficients satisfy

∑
j

A∗
j (p)Aj(p′) = δ(p− p′). (F.8)

The partition function can now be rewritten as

Q =
∑

j

∫
dx

[
1

h
3N
2

∫
dpA∗

j (p) exp
(
−2πi

px

h

)]
exp

(
− Ĥ

kT

)[
1

h
3N
2

∫
dp′Aj(p′) exp

(
2πi

p′x
h

)]

=
1
h3N

∫
dx

∫
dp exp

(
−2πi

px

h

)
exp

(
− Ĥ

kT

)
exp

(
2πi

px

h

)
. (F.9)

In the classical limit, the integrand simplifies to the usual Boltzmann weight

exp
(
−2πi

px

h

)
exp

(
− Ĥ

kT

)
exp

(
2πi

px

h

)
→ exp

(−H
kT

)
(F.10)

so the classical partition function for an N -particle system in the canonical

ensemble becomes

Qclassical =
1
h3N

∫
dx

∫
dp exp

(−H
kT

)
. (F.11)
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The remarkable point, which is quite well known, is that h3 is seen to be the

“smallest unit” of phasespace.
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